SWISS*PHOTONICS

Swiss Laser Microprocessing Solutions Genève Palexbo EPMT, 18. Juin 2014

	Institut für Produkt- und Produktionsengineering (IPPE) der FHNW, Windisch AG beat.luescher@fhnw.ch www.fhnw.ch/technik/ippe Maschineningenieurstudium an der HTL Brugg-Windisch. Einige Jahre als Projektleiter in der Maschinenindustrie. Technischer Leiter und Mitglied der Geschäftsleitung in einer mittelgrossen		
	Unternehmung. Seit 1996 an der Fachhochschule Nordwestschweiz, Dozent und Teamleiter des Kompetenzbereiches 3D-Laser Mikromaterialbearbeitung am Institut für Produkt- und Produktionsengineering		
Beat Lüscher	Welcome		
	Head Laboratory Advanced Materials Processing of Empa Thun BE patrik.hoffmann@empa.ch www.empa.ch		
	Adjunct Professor at LPMAT, Swiss Federal Institute of Technology Lausanne, EPFL Laboratory Head of Advanced Materials Processing, Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun.		
	Chemistry studies at University of Karlsruhe, PhD thesis at EPFL in 1992. Industrial experience at IBM San Jose (USA) and manager of dental section in company (Germany). Since 1997 research and		
Prof. Dr. Patrik Hoffmann	teaching Laser Micro-Processing at EPFL. Since April 2009 heading LAMP at Empa, continuing teaching at EPFL. Author of 111 peer reviewed journal papers and inventor of 6 patents.		
	Chair Session 1: Laser Micromachining Applications		
	Head of Applications bei Time-Bandwidth Products AG		
	ao@tbwp.com www.time-bandwidth.com		
	since 2012 Time-Bandwidth Products AG, Zurich, Switzerland. Head of Applications		
	since 2006 Time-Bandwidth Products AG, Zurich, Switzerland.		
all states	Project manager laser R&D2006-2010ETH Zurich, Physics departement Physik, Ultrafast Laser-Physics.		
Dr. Andres Oehler			
	2000-2005 TRUMPF Laser Marking Systems AG, Grüsch, Switzerland. R&D engineer optics		
	1999-2000 TRUMPF Lasertechnik GmbH, Ditzingen, Germany.		
	R&D engineer		
	Ultrafast beam deflection for efficient picosecond laser processing		
	Emerging industrial applications require picosecond lasers with high average power to increase productivity. While such lasers are readily available, transferring their benefits into industrial processes is challenging - mainly due to the limited performance of available beam delivery. Here we discuss requirements for beam delivery systems and focus on a polygon-scanner to discuss its		
	performance, current technical issues and obtained results.		

	Product Manager, JK Lasers mark.richmond@gsig.com		
Dr. Mark Richmond	After receiving a DPhil from the University of Oxford in 1985 for research into VUV lasers, he has approaching 30 years' experience in laser developments for defence and industrial applications covering a broad range of laser types and power levels. His focus now is on promoting the advantages of Fiber Laser technology into industrial manufacturing processes.		
	materials processing system level control system, aiming	b Machining t the user benefits possible for the next generation of Fiber Laser based s by tightly integrating sensors associated with the laser into the system to ensure higher throughput and better process control at reduced g looked at as <i>Smart</i> Laser features.	
Dr. Thomas Bewer	Head of Advanced Developr thomas.bewer@ch.trumpf.c	ment, TRUMPF Maschinen AG, Baar ZG om www.ch.trumpf.com	
	Mr. Bewer is responsible for (ZG). He did his PHD in Mech	the TRUMPF Laser application centre in Switzerland, located in Baar nanical engineering in the field of process development for fuel cells. the process development with ultrashort pulse lasers.	
	flat panel displays and photo broad possibilities for the wa	e Watch Industry n established tool in the production of consumer electronic products, of ovoltaic cells. With their versatility regarding choice of material they offer atch industry. In this talk the possibilities, the current status and g descriptive examples from the lab.	
	EPFL and Grizzly Photonics (
Prof. em. Dr. René Salathé	rene.salathe@epfl.ch www.grizzlyphotonics.com René Paul Salathé is Professor em. at EPFL since 2009. He is currently a technology consultant for several companies and he serves as an expert member of the Life Science team at the Swiss Innovation Agency (KTI/CTI) in Bern, on the scientific advisory board of the <i>Fraunhofer-Institut für</i> <i>Lasertechnik ILT</i> in Aachen, and he participates on expert panels for the <i>Deutsche</i> <i>Forschungsgemeinschaft</i> . He is a member of the Swiss Society for Optics and Microscopy, the European Optical Society, the Optical Society of America, a senior member of the IEEE, and a life time member of the Swiss Physical Society.		
	He received the MS, PhD, and Habilitation degrees at the Uni of Bern in 1970, 1974, and 1979, respectively. Prior to his appointment at EPFL in 1989, he was directing the division <i>Material Testing and Technology</i> at the research and development center of the Swiss PTT. He has been active in the fields of semiconductor lasers, fibers, integrated optics, laser processing, and biomedical optics. The results of his research activities have been published more than 250 scientific contributions and 37 PhD theses at EPFL. Several start-up companies have been founded based on patents elaborated in his laboratory and/or by his PhD students. His actual research interests are in the areas of laser tweezers in micro-fluidics for biochemical applications and in optical fiber sensor applications.		
	Chair Session 2: Surface Stru	cturing, Polishing, and Laser sintering	
	RA Fraunhofer-Institut für L ingo.ross@ilt.frauenhofer.de		
	Sept. 19, 1985 1992-2005 2005-2011 Apr Sept. 2009	Born in Cologne, Germany School education in Brauweiler, Germany Study of Mechanical Engineering at RWTH Aachen University Student trainee at the Fraunhofer Center for Manufacturing Innovation CMI, Boston, MA	
Ingo Ross	Nov. 2009 - Feb.2010 since Jan. 2012	Student trainee at MTU Aero Engines, Munich Research associate at the Fraunhofer ILT, Aachen D	
	Prospects of Laser Polishing for Small and Complex Shaped Parts Laser polishing is a new contactless manufacturing process for the finish of parts made out of metal, thermoplastic or glass. The key advantages of the process are its capability for automation, processing speed, shape retention and the chemically clean surfaces. This makes laser polishing a highly attractive alternative to the conventional, abrasive processes – especially for small and complex shaped parts.		

	BCI Group - W. Blösch AG, Grenchen SO g.dumitru@bloesch.ch www.bloesch.ch		
	Dr. Dumitru a rejoint Blösch SA en 2009 afin d'approfondir la R&D dans le domaine du laser et depuis		
	2011 il est responsable de la division Composants pour l'Industrie Horlogère, qui regroupe divers		
	procédés d'usinage et traitements galvaniques : l'ablation laser, l'électro-érosion, le moulage des		
Dr. Gabriel	plastiques, l'électro-formage, le dérhodiage etc.		
Dumitru	Auparavant engagé auprès de ETH Zürich, de la FHNW et de l'Uni Berne, Dr. Dumitru a acquis une expérience certaine dans l'usinage laser pulsé, en publiant plus de 50 articles scientifiques. Il a passé sa thèse en 2002 à Berne sur la structuration laser des surfaces tribogiques revêtues.		
	La structuration laser du saphir : applications et défis		
	Après avoir brièvement discuté le matériel saphir et sa fabrication, la conférence se consacre à la		
	réponse de cette matière au faisceau laser pulsé.		
	La structuration profonde (gravage) et celle superficielle (matage) seront discutées en images, aussi comme la possibilité d'associer une métallisation PVD avec une structuration laser, tout ça portant sur la métallisation mate.		
	Pour terminer, l'impact des différents seuils d'ablation laser sera exemplifié avec l'ablation sélective		
	des revêtements décoratifs ou fonctionnels.		
	Head Laboratory Advanced Materials Processing of Empa Thun BE		
P	patrik.hoffmann@empa.ch www.empa.ch		
100	Mask Projection Surface Structuring		
Tan	Surface structuring of polymer sheets by deep UV light mask projection ablation results in precise		
	surface topographies.		
A Second	We are developing on both industrial and academic level 3D Microstructures for various applications,		
	such as anti bio-fouling, drag reduction for transport industry, LED-edge-lit lighting, OLED out-		
Prof. Dr. Patrik	coupling films, flexible electronics, flexible organic illuminator, Diffractive Optical Elements (DOE),		
Hoffmann	and more.		
	The technology pushes the limits of 2.5 D processing to extremes: super high resolution with 2µm line width and 15µm depth, arbitrary curvature 3D microstructures with 20nm rms surface		
	roughness, depth definition below 100nm, lateral resolution below 2µm. All these specifications can		
	be achieved on up to $3m^2$ large substrates.		
	In general a master polymer substrate is ablated, then replicated to Ni shim enabling to produce cost		
	efficient kilometer long smart foils using roll-to-roll embossing.		
	European Product Manager, Cooksongold part of the Heimerle + Meule Group, Birmingham UK		
	david.fletcher@cooksongold.com www.cooksongold.com		
teret	Devid Eletekan has weaked at Cookeen and a next of the University - Maryle Crown for 25 years and is		
	David Fletcher has worked at Cooksongold part of the Heimerle + Meule Group for 25 years and is their European product manager for Direct Metal Laser Sintering in precious metals and precious		
	metal coin blank supply to Mints worldwide. He is a Lean Six Sigma Green Belt. Cooksongold has		
	partnered with Electro Optical Systems (EOS) to launch Laser Sintering Technology in the jewellery		
	and watch industries.		
David Fletcher	Progress in Direct Metal Laser Sintering for Jewellery & Watch Industry		
	One of the major challenges to successful implementation of Direct Metal Laser Sintering (DMLS), or		
	any additive manufacturing (AM) process, is design and preparation of computer models. This		
	presentation will explore a vision to use eManufacturing techniques to develop automated design		
	tools to use with DMLS technology. These automated tools can be used to minimize part weight and		
	optimize part design to take full advantage of direct manufacturing processes and produce quality		
	parts that are otherwise unattainable with conventional manufacturing techniques.		

SWISS*PHOTONICS

Managing director

Dr. Christian Bosshard bosshard@swissphotonics.net Telefon +41 61 690 60 40

President

Dr. Christoph Harder harder@swissphotonics.net Telefon +41 79 219 90 51

Internet www.swissphotonics.net