Reliability of PV modules and long-term performance prediction

F. Sculati-Meillaud
Ecole Polytechnique Fédérale de Lausanne, Neuchâtel, Switzerland
fanny.sculati-meillaud@epfl.ch

Swiss Photonics Workshop
September 10th 2015
PV research in Neuchâtel

- Two neighboring institutions

- CSEM PV-Center founded in 2013
- Technology transfer center for PV
- Applied research, industrial mandates

- Fundamental research
- Advanced devices

Different missions but strong collaboration and complementary competences
PV research in Neuchâtel

- **Modules activities**

 - Module reliability testing and modeling
 - Module components and materials accelerated reliability testing
 - Module testing tools (encapsulation quality and reliability) development
 - Participation in work groups for PV standards development

- **Modules & system integration**

 - New PV module encapsulation materials and interconnection techniques
 - Novel encapsulation process development
 - Innovative module design
 - Architectural projects with PV
 - Integration to variable grid conditions
 - Batteries interfacing to PV
Reliability of PV modules

- PV module: a multi-layer system...

 - Al frame
 - Glass
 - Front encapsulant
 - Solar cells
 - Rear encapsulant
 - Backsheet (or glass)
 - Junction box

 Backsheet Delamination (frameless modules)
Reliability of PV modules: many parameters

- ...with lots of impacts & interactions

Encapsulation Materials/Design

Encapsulation Quality:
- Gel content
- Adhesion
- Voids
- Cell cracking
- Cell swimming
- Residual stress
...

Module Reliability in ALT:
- Damp heat
- Humidity freeze
- Thermal cycling
- Mechanical loading
- Hail test
- UV radiation
- PID
...

Simulation

Prediction

Module performance in the field

with lots of impacts & interactions
Aim: predict the module lifetime and long-term performance for a given set of conditions

- Method: build a model based on
 - A failure mode and effects analysis based on literature and field data (!)
 - Dedicated sets of accelerated life tests (ALTs) to reproduce predominant failure modes as a function of:
 - Climate where the module operates
 - Stand alone installation vs BIPV
 - Technology specificities (interconnects,..)
 - In literature, most authors consider one failure at a time with an Arrhenius type behavior, sometimes extended to take into account irradiance and/or humidity

Challenge here is to be able to predict impacts of inter-related failure mechanisms on lifetime and performance!
Reliability and ALTs

- **Examples of ALT**

 Ref: Herrmann et al., PVSC 37th IEEE, 2011

 - **Thermal Cycling test (IEC 61215):**
 - 200 cycles with T between $-40^\circ C$ and $85^\circ C$

 - **Damp Heat test (IEC 61215):**
 - $T=85^\circ C$, RH=85% for 1000 hours

 - Clear necessity to define qualification test beyond IEC 61215 to evaluate long-term performance as a function of climate
Moisture ingress into PV modules

- **Problematics of moisture ingress:**
 - Delamination (mechanical stability loss, optical loss, water accumulation, ...)
 - Corrosion (R_s increase, could accelerate EVA yellowing, ...)
 - Enhanced probability of PID (due to reduced volume resistivity of encapsulants)
 - Encapsulant degradation (in combination with heat and UV)

- **Different techniques can be used to minor and study water ingress:**
 - Permeation WVTR Mocon, Fourier Transform Infrared Spectroscopy (FTIR),...
 - Humidity sensor
Acquire input material properties – WVTR data treatment:

- WVTR characterization of different commercial backsheets (BS) and EVAs formulations measured at various temperatures (30°C, 40°C, 50°C)

Mathematical modeling:

\[
WVTR(t) = \frac{DC_s}{l} \left[1 + 2 \sum_{n=1}^{\infty} (-1)^n e^{-\frac{Dn^2\pi^2t}{l^2}} \right]
\]

- \(C_s\): saturation concentration,
- \(l\): film thickness,
- \(t\): time

Temperature dependency of D:

\[
E_a = 46.56 \text{ kJ/mol}
\]

\[
D(T) = D(T_{ref}) e^{-\frac{E_a}{R} \left(\frac{1}{T} - \frac{1}{T_{ref}} \right)}
\]
Modeling: geometry

- **2D FEM modeling geometry**
 - A model was built in COMSOL to solve Fick’s Second Law of diffusion:
 \[
 \frac{\partial c(\vec{x}, t)}{\partial t} - \text{div}(D \cdot \nabla c(\vec{x}, t)) = 0
 \]
 - Boundary Conditions (Henry’s law): \(c_{\text{surf}}(T, RH) = S(T) \cdot p_{H_2O}(T, RH) \)
Modeling: climates

Three climatic conditions

<table>
<thead>
<tr>
<th>Climatic zone</th>
<th>“Cool & Humid” (Temperate)</th>
<th>“Hot & Humid” (Tropical)</th>
<th>“Hot & Dry” (Desert)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Neuchâtel (Switzerland)</td>
<td>Mumbai (India)</td>
<td>Sharurah (Saudi Arabia)</td>
</tr>
</tbody>
</table>

- The module temperature was estimated using King’s model:
 \[T_{mod} = T_{amb} + E \cdot e^{-a \cdot b \cdot v} \]
 with an open-rack mounting configuration.
Moisture ingress into PV modules - Modeling

- **Glass/Glass module (G/G)**
 - Water concentration as a function of time (years)

 Tropical
 ![Graph](image1)

 Cool & humid
 ![Graph](image2)

 Desert
 ![Graph](image3)

- As expected the moisture ingress is the fastest in tropical climate, with clear seasonal variations, particularly at the edge.
- In the cool and humid environment, saturation is reached after 10 years at edge, very slow ingress at back of the cells.
- In the desert climate saturation at edge quickly achieved as a result of higher T and low RH%.
Moisture ingress into PV modules - Modeling

- Module configuration:
 - Glass/glass (G/G) vs glass/backsheet (G/BS) in temperate climate (cool and humid)
 - In G/BS, saturation quasi reached at cell back after 1st year, then seasonal variations clearly visible; simulation to be extended for longer period
 - G/G reduces moisture accumulation with respect to G/BS (moisture content at cell back already larger in G/BS after 1st year than in G/G after 20 years)
Moisture ingress into PV modules - Modeling

Different encapsulants in temperate climate

- Water concentration in glass/glass (G/G) configuration for 3 encapsulants, simulated for 1 year

- PO#1, a commercial polyolefin-based encapsulant, shows significantly lower moisture ingress than the other 2 EVA encapsulants in one year

- For EVA#1 the water concentration is reduced by over 50% compared to EVA#2
 — EVA formulation plays an important role on water ingress

- These results demonstrate the ability to predict water ingress as a function of:
 - Module configuration
 - Encapsulant

- Care must be taken that not only diffusion coefficient but also solubility are important when choosing the proper material
How to measure humidity within a module?

- Encapsulated capacitance sensor as moisture/T indicator

 Capacitive sensor with digital output
 Sensirion SHT25:
 1.8 % RH, 0.2°C accuracy

 Copper plated PCB strips (27x3 cm) with 10 sensors each spaced at 25 mm from each other

 The strip is laminated within the encapsulant in two configurations:
 - Encapsulant only
 - Glass/glass and glass/backsheet samples

 Results to be presented at the next EU PVSEC (5DO10.3)
Comparison of simulated values with outdoor measurements (encapsulated sensors)

- Quite good agreement between measurement and simulation but:
 - Further simulations are required (longer time, controlled conditions)
 - RH value given by the sensor to be directly correlated with amount of water present in the polymer as assessed by an independent method (e.g. Karl Fischer)
Example of link between moisture and reliability: corrosion

- Different encapsulants in extended damp heat
 - Standard solar cells, Glass/Backsheet module configuration, 85 °C / 85% RH, 8000 h.
 - Decrease in power loss corresponds to corrosion of metallic contacts

Ref: G. Cattaneo et al., Proc of 29th EU PVSEC (2014)
Example of link between moisture and reliability: Potential Induced Degradation (PID)

- **Potential Induced Degradation (PID)**
 - One of the major failures observed in temperate climate
 - Power degradation due to increased shunt resistance
 - Stress factors: Voltage, Temperature, Humidity → can be mitigated at system but also module level

- **Mini-modules prepared with different encapsulant and configuration**
 - 2 cells mini-modules, Glass/Glass and Glass/Backsheet
 - Placed in climatic chamber at RH = 85% and T = 40°C/60°C/85°C for 96 hours
 - Leakage current monitored and mini-modules characterized with IV, EL
First results at RH = 85% are in agreement with literature:

- Leakage current increases with $T \rightarrow$ fit with an Arrhenius law
- Impact of encapsulant: for EVA activation energy $\sim 80 \text{ kJ/mol}$ (in line with literature), TPO well above

Impact of encapsulant: almost no degradation for EVA 1 G/G and TPO, EVA 2 worst case

Tests to be repeated at fixed temperature and various humidity, also with other c-Si based cells
Summary/Outlook

- Moisture ingress has a strong impact on module reliability and lifetime
- A good model exist to simulate the moisture ingress into both G/G and G/BS modules, with which the effect of module configuration and packaging materials can be evaluated
- An in-situ RH/T sensor system embedded into PV modules was developed and applied, to measure the actual RH and T inside the module and was used to validate the model
- Results of outdoor data, water ingress simulations and ATLs provide first bricks to predictive modeling
- This predictive model must consider specificities linked to climate and operating conditions (e.g. integrated roof, façades vs stand-alone) based on reported major failure mechanisms
- The model is first develop for standard c-Si cells then should be extended to advanced c-Si based technologies (PERC, IBC, HJT)
Thanks for your attention!

Thanks to all members of the PV-Lab, CSEM & University of Ljubljana who contributed. Thanks to funding through the Swiss Federal Office for Energy, EOS Holding and this research project is part of the National Research Programme "Energy Turnaround" (NRP 70) of the Swiss National Science Foundation (SNSF)