Willkommen Welcome Bienvenue

Development of reactive joining technologies for electronic packaging and assembly

Workshop "Miniaturized Photonic Packaging", 16.05.2017, CSEM, Alpnach

B. Rheingans¹, J. Janczak-Rusch¹, J. Neuenschwander¹, R. Furrer¹, A. Schumacher², I. Spies², S. Knappmann², L.P.H. Jeurgens¹

¹Empa, Swiss Federal Laboratories for Materials Science and Technology, Switzerland ²Hahn Schickard, Germany

Laboratory Joining Technologies & Corrosion at Empa

Our portfolio

- Advanced Joining Technologies
 (soldering, brazing, TLP, diffusion bonding, micro- & nano-joining)
- Corrosion Management (investigations of corrosion failures, mechanisms and prevention strategies)
- Surface & Interface Engineering (of metals, alloys, oxide films and their coating systems)

Our expertise within the Swiss Photonic Packaging Laboratory

Custom-designed solutions in the field of joining: brazing, soldering, diffusion bonding, transient liquid phase bonding, development of nanostructured filler alloys, coatings and foils,...

500 nm

Laboratory Joining Technologies & Corrosion at Empa

New wetting furnace, financial support from **SWISS* PHOTONICS**

Purpose

- investigation of wettability (contact angle, spreading) under controlled conditions (*t*, *T*, atmosphere)
- generally: visual inspection of samples at high temperature under controlled atmosphere

Specifications

- quartz tube furnace
 - max. heating rate: ca. 20 K/min
 - max. *T*: ca. 1000 °C
- atmospheres
 - controlled flow rates: inert, reducing, oxidising
 - vacuum (HV range)

Laboratory Joining Technologies & Corrosion at Empa

New wetting furnace, financial support from **SWISS* PHOTONICS**

Example: Sn pearl on DCB substrate

Reactive nano-multilayers

before reaction: nano-multilayers

after reaction: intermetallic phase

0.054800 s 10000 fps 97

high-speed recording of a reacting Nanofoil[®], total time: 2.5 milliseconds

cross-sections of a nano-multilayer foil before and after reaction

Reactive nano-multilayers

Key facts

- alternating layers of metals (e.g. Ni+Al)
- internal heat production by metal-metal reaction, no gas phase involved
- high reaction temperatures (>1000 °C)
- high reaction speeds (1-50 m/s)
- defined heat generation by variation of system and total thickness (10 - 250 µm)

type	heat release	example
low	30 - 59 kJ/mol-atom	Al/Ti
medium	60 - 89 kJ/mol-atom	Ni/Al
high	> 90 kJ/mol	Al/Pd

idea: usage as internal heat source for soldering/brazing

Reactive nano-multilayers

Development

- **1960s** (esp. USSR): exothermal reactions for production of intermetallics
- 1979, Prentice: "Heat Sources for Thermal Batteries: Exothermic Intermetallic Reactions" (US patent); one scenario: alternating metallic layers
- **1986**, Floro: "Propagation of explosive crystallization in thin Rh–Si multilayer films" (J. Vac. Sci. Technol. A); preparation of nano-multilayer films
- **1995**, Makowiecki: "Low Temperature Reactive Bonding" (patent); **films**
- 2001, Weihs: "Method of making reactive multilayer foil and resulting product" (patent, US only); freestanding foils
 2001, Weihs: founding of "Reactive NanoTechnologies" (now Indium Corp.); start of commercial production of Nanofoils[®]
- since then: increased usage for joining

2011, Longtin/Empa: "Benign Joining of Ultrafine Grained Aerospace Aluminum Alloys Using Nanotechnology" (Adv. Mater.)

Joining with reactive nano-multilayers **Principle**

alternative approach: direct deposition of reactive nanomultilayers (e.g. on wafer)

soldering rework high-strength joints* bonding of heat-sinks

* esp. for directly deposited RNMLs

Joining with reactive nano-multilayers

Advantages

Processing

- localised heat source: components remain "cold"
- no furnace
- no protective atmosphere
- no flux (if clean components)
- easy handling of joining components (\rightarrow pick and place)
- short processing time

Joint performance

- microstructure refinement
- good thermal properties (heat conductivity)
- stability against high temperatures & humidity

temperature-sensitive components

> stress-sensitive components

controlled atmosphere, hermetic encapsulations*

prototyping

alternative to step-

Joining with reactive nano-multilayers

Example: joining of a nano-crystalline Al alloy (Empa, 2011)

temperature development in joining zone

successful joining of heat-sensitive materials

Benign Joining of Ultrafine Grained Aerospace Aluminum Alloys using Nanotechnology *Longtin et al., Adv. Mater 23, 2011*

Joining with reactive nano-multilayers

Typical problems & challenges

1. "Classical" soldering problems

- Example: Joining of stainless steel, shear strength
 - Wang 2005: **36 MPa** (Ni-Au metallisation, AgSn solder; J. Appl. Phys. 97)
 - Sen 2016: 9 MPa (Ni metallisation, Sn + InCuSil solder, Euro Hybrid Proceedings 2016)
- handling, cleaning, general bonding issues...

2. Process-intrinsic problem: heat management

- no possibility for external control of process time and temperature
 - too hot: damage of components (cf. joining of nano-Al)
 - too cold: no melting of solder
 - additionally: thermo-mechanical shockwave
- challenge: influence of substrates and components

Joining with reactive nano-multilayers

Interreg V – Project: "Schonendes reaktives Fügen von Mikrosystemen"

Project partner:

- Hahn-Schickard, Baden-Württemberg, Germany
- R&D in micro-assembly and packaging, sensor development,...

Project goals:

- development of *truly* benign joining processes
- characterisation of thermo-mechanical stress during joining
- design rules for reactive joining

12

Hahn

Schickard

EUROPÄISCHE UNION Europäischer Fonds für regionale Entwicklung

Design of test series

joining components

■ materials: borosilicate glass, Si, Al₂O₃, Cu

- bond area: 4 mm x 4 mm
- joining setup
 - reactive system:

Ni-Al, commercial nanofoils[®] (60 µm + 2 x 1 µm InCuSil) Ni

- metallisation: N
- solder: Sn foils (2 x 10 μm)

test methods

- non-destructive (scanning acoustic microscopy, computer tomography)
- destructive (shear strength, cross-sections)

Overview results

substrate	heat conductivity (W · m ⁻¹ · K ⁻¹)	solderability	
borosilicate glass	1.2	joint formed, but extensive cracking	
Al ₂ O ₃	30	good	
Si	129 (avrg.)	good	
Cu	401	no joint formed	8/10

Example borosilicate glass: non-destructive testing

Example borosilicate glass: process optimisation

Solution: 2 x 75 µm Sn instead of 2 x 10 µm + pressure reduction ➡ no cracks in glass (but still pores)

Other materials: Al₂O₃, Si and Cu

- Al₂O₃ and Si: some porosity, but excellent strength
 - Al_2O_3 : shear strength around 45 MPa
 - Si: fracture of substrates around 20 MPa
 - Cu
 - thicker reactive foil (250 μm) = more heat generation: unsuccessful
 - galvanic pre-soldering of substrates: successful

Summary

Joining with RNMLs: promising new technique

- simple, fast and flexible: no furnace, no protective atmosphere, flux-free...
- benign joining possible
- hermeticity possible
- high-quality joints possible

Crucial

- good soldering practice
- tailored joining setup for heat management:
 - reactive foil vs.
 - solder vs.
 - substrate/components

Thank you for your attention!

Looking forward to your questions ...and potential cooperation projects!

Acknowledgements

- financial support by the Interreg V-program
- financial support by Swiss Photonics

SWISS*PHOTONICS

Contact data

Bastian Rheingans Jolanta Janczak-Rusch Lars Jeurgens bastian.rheingans@empa.ch, +41 58 765 4371 jolanta.janczak@empa.ch, +41 58 765 4529 lars.jeurgens@empa.ch, +41 58 765 4053