Development of reactive joining technologies for electronic packaging and assembly

Workshop “Miniaturized Photonic Packaging”, 16.05.2017, CSEM, Alpnach

B. Rheingans1, J. Janczak-Rusch1, J. Neuenschwander1, R. Furrer1, A. Schumacher2, I. Spies2, S. Knappmann2, L.P.H. Jeurgens1

1Empa, Swiss Federal Laboratories for Materials Science and Technology, Switzerland
2Hahn Schickard, Germany
Laboratory Joining Technologies & Corrosion at Empa

Our portfolio

- Advanced Joining Technologies
 (soldering, brazing, TLP, diffusion bonding, micro- & nano-joining)
- Corrosion Management
 (investigations of corrosion failures, mechanisms and prevention strategies)
- Surface & Interface Engineering
 (of metals, alloys, oxide films and their coating systems)

Our expertise within the Swiss Photonic Packaging Laboratory

- Custom-designed solutions in the field of joining: brazing, soldering, diffusion bonding, transient liquid phase bonding, development of nanostructured filler alloys, coatings and foils,...
Laboratory Joining Technologies & Corrosion at Empa

New wetting furnace, financial support from Swiss Photonics

Purpose
- investigation of wettability (contact angle, spreading) under controlled conditions (t, T, atmosphere)
- generally: visual inspection of samples at high temperature under controlled atmosphere

Specifications
- quartz tube furnace
 - max. heating rate: ca. 20 K/min
 - max. T: ca. 1000 °C
- atmospheres
 - controlled flow rates: inert, reducing, oxidising
 - vacuum (HV range)
Laboratory Joining Technologies & Corrosion at Empa

New wetting furnace, financial support from Swiss Photonics

Example: Sn pearl on DCB substrate

\[HR = 5 \text{ K/min} \]

\[T = 18 \degree C, \quad t = 0 \text{ min} \]

\[T = 265 \degree C, \quad t = 49 \text{ min} \]

\[T = 295 \degree C, \quad t = 55 \text{ min} \]
Reactive nano-multilayers

Cross-sections of a nano-multilayer foil before and after reaction:
- Before reaction: nano-multilayers
- After reaction: intermetallic phase

High-speed recording of a reacting Nanofoil®, total time: 2.5 milliseconds
Reactive nano-multilayers

Key facts
- alternating layers of metals (e.g. Ni+Al)
- internal heat production by metal-metal reaction, no gas phase involved
- high reaction temperatures (>1000 °C)
- high reaction speeds (1-50 m/s)
- defined heat generation by variation of system and total thickness (10 - 250 µm)

<table>
<thead>
<tr>
<th>type</th>
<th>heat release</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td>30 - 59 kJ/mol-atom</td>
<td>Al/Ti</td>
</tr>
<tr>
<td>medium</td>
<td>60 - 89 kJ/mol-atom</td>
<td>Ni/Al</td>
</tr>
<tr>
<td>high</td>
<td>> 90 kJ/mol</td>
<td>Al/Pd</td>
</tr>
</tbody>
</table>

idea: usage as internal heat source for soldering/brazing
Reactive nano-multilayers

Development

- **1960s** (esp. USSR): exothermal reactions for production of intermetallics
- **1979**, Prentice: “Heat Sources for Thermal Batteries: Exothermic Intermetallic Reactions” (US patent); **one scenario: alternating metallic layers**
- **1986**, Floro: “Propagation of explosive crystallization in thin Rh–Si multilayer films” (J. Vac. Sci. Technol. A); **preparation of nano-multilayer films**
- **1995**, Makowiecki: “Low Temperature Reactive Bonding” (patent); **films**
- **2001**, Weihs: “Method of making reactive multilayer foil and resulting product” (patent, US only); **freestanding foils**
 - **2001**, Weihs: founding of “Reactive NanoTechnologies” (now Indium Corp.); **start of commercial production of Nanofoils®**
- since then: increased usage for joining

Joining with reactive nano-multilayers

Principle

alternative approach: direct deposition of reactive nano-multilayers (e.g. on wafer)
Joining with reactive nano-multilayers

Advantages

Processing
- localised heat source: components remain “cold”
- no furnace
- no protective atmosphere
- no flux (if clean components)
- easy handling of joining components (→pick and place)
- short processing time

Joint performance
- microstructure refinement
- good thermal properties (heat conductivity)
- stability against high temperatures & humidity

* esp. for directly deposited RNMLs
Joining with reactive nano-multilayers

Example: joining of a nano-crystalline Al alloy (Empa, 2011)

Joining set-up

Temperature development in joining zone

successful joining of heat-sensitive materials

Benign Joining of Ultrafine Grained Aerospace Aluminum Alloys using Nanotechnology
Joining with reactive nano-multilayers

Typical problems & challenges

1. “Classical” soldering problems
 - Example: Joining of stainless steel, shear strength
 - Wang 2005: **36 MPa** (Ni-Au metallisation, AgSn solder; J. Appl. Phys. 97)
 - Sen 2016: **9 MPa** (Ni metallisation, Sn + InCuSil solder, Euro Hybrid Proceedings 2016)
 - handling, cleaning, general bonding issues...

2. Process-intrinsic problem: heat management
 - no possibility for external control of process time and temperature
 - too hot: damage of components (cf. joining of nano-Al)
 - too cold: no melting of solder
 - additionally: thermo-mechanical shockwave
 - challenge: influence of substrates and components
Joining with reactive nano-multilayers

Interreg V – Project: “Schonendes reaktives Fügen von Mikrosystemen”

Project partner:
- Hahn-Schickard, Baden-Württemberg, Germany
- R&D in micro-assembly and packaging, sensor development, ...

Project goals:
- development of *truly* benign joining processes
- characterisation of thermo-mechanical stress during joining
- design rules for reactive joining

please contact author for further information
please contact author for further information
please contact author for further information

Montage von Mikrosystemen mit reaktivem Nanofügen in einer Fertigungsprozesskette (ReMTeC)
Abschlussbericht, IGF-Vorhaben-Nr. 17368 N, Axel Schumacher, Hahn-Schickard
Focus: influence of substrates/components

Design of test series

- joining components
 - materials: borosilicate glass, Si, Al$_2$O$_3$, Cu
 - bond area: 4 mm x 4 mm

- joining setup
 - reactive system: Ni-Al, commercial nanofoils®
 (60 µm + 2 x 1 µm InCuSil)
 - metallisation: Ni
 - solder: Sn foils (2 x 10 µm)

- test methods
 - non-destructive (scanning acoustic microscopy, computer tomography)
 - destructive (shear strength, cross-sections)
Focus: influence of substrates/components

Overview results

<table>
<thead>
<tr>
<th>substrate</th>
<th>heat conductivity (W · m⁻¹ · K⁻¹)</th>
<th>solderability</th>
</tr>
</thead>
<tbody>
<tr>
<td>borosilicate glass</td>
<td>1.2</td>
<td>joint formed, but extensive cracking</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>30</td>
<td>good</td>
</tr>
<tr>
<td>Si</td>
<td>129 (avrg.)</td>
<td>good</td>
</tr>
<tr>
<td>Cu</td>
<td>401</td>
<td>no joint formed</td>
</tr>
</tbody>
</table>
Focus: influence of substrates/components

Example borosilicate glass: non-destructive testing

- optical microscopy, differential interference contrast
- scanning acoustic microscopy, pore echo
- cracks, mechanical stress
- voiding in solder layer
- voiding, cracks in reactive foil
Focus: influence of substrates/components

Example borosilicate glass: process optimisation

Solution: 2 x 75 µm Sn instead of 2 x 10 µm + pressure reduction

☛ no cracks in glass (but still pores)
Focus: influence of substrates/components

Other materials: Al_2O_3, Si and Cu

- Al_2O_3 and Si: some porosity, but excellent strength
 - Al_2O_3: shear strength around 45 MPa
 - Si: fracture of substrates around 20 MPa

- Cu
 - thicker reactive foil (250 µm) = more heat generation: unsuccessful
 - galvanic pre-soldering of substrates: successful
Summary

Joining with RNMLs: promising new technique

- simple, fast and flexible: no furnace, no protective atmosphere, flux-free...
- benign joining possible
- hermeticity possible
- high-quality joints possible

Crucial

- good soldering practice
- tailored joining setup for heat management:
 - reactive foil vs.
 - solder vs.
 - substrate/components
Thank you for your attention!

Looking forward to your questions
...and potential cooperation projects!

Acknowledgements

- financial support by the Interreg V-program
- financial support by Swiss Photonics

Contact data

Bastian Rheingans bastian.rheingans@empa.ch, +41 58 765 4371
Jolanta Janczak-Rusch jolanta.janczak@empa.ch, +41 58 765 4529
Lars Jeurgens lars.jeurgens@empa.ch, +41 58 765 4053