Showstoppers & Bottlenecks to Terawatt Solar Photovoltaics

Meng Tao, Professor

Laboratory for Terawatt Photovoltaics
Arizona State University

Phone: (480) 965-9845 Email: meng.tao@asu.edu
Outline

- Principle of solar cells
- Current & future global energy demands
 - Scales required for solar PV
- Requirements for a terawatt-capable PV technology
- Showstoppers & bottlenecks to terawatt PV
 - Availability of raw materials
 - Energy input for Si wafers & modules
 - Recycling of end-of-life PV modules
 - Terawatt-scale storage of solar electricity
 - Manufacturing and installation costs
- Suggested strategic R&D directions for PV
This talk is based primarily on:

This analysis started with the establishment of the U.S. Photovoltaic Manufacturing Consortium (Albany, NY, 2011)

- A 5-year joint effort initiated by SEMATECH (D. Holladay) & myself (2006–2011)
- Forced me to look into longer-term, bigger-picture, national & global issues for PV technologies
- First presentations at Electrochemical Society fall meeting (Vienna, 2009) & U.S. PV Consortium Workshop (Washington DC, 2010)
Arizona Landscape

Sunrise over Four Peaks from my home
Principle of Solar Cells

- **Light-induced voltage**
 - Employed for solar-to-electric conversion

- **Two key processes**
 - Light absorption
 - Charge separation

- **Two requirements**
 - Light absorber: molecule or semiconductor
 - Potential difference: p-n, Schottky, or hetero

Si Solar Cell Operation

- Si wafer: 200 μm low 10^{16} B doping
- Emitter: 0.5 μm 10^{19} P doping
- BSF: 10 μm low 10^{19} Al doping
- SiN$_x$: 75 nm
How Much Energy Do We Need?

Current global consumption 18 TW (18×10^{12} W)
Projected demand in 2100 46 TW

Conclusion #1

Any solar PV technology has to be deployed at a TW scale, or it will make little impact on our energy mix.

- By 2100, global energy demand will be 46 TW.
- If 30% from PV, that is 13.8 TW from PV.
- Time-averaged output ~15% of peak output, so ~92 TW\(_p\) PV installation needed.
- If the average lifetime of PV modules is 25 years, the annual production needs to reach ~3.7 TW\(_p/yr\).

We need ~100 TW\(_p\) of solar PV installed & ~4 TW\(_p/yr\) annual production!
Implications of Terawatt PV

- Terawatt-scale deployment of any PV technology requires massive amounts of natural resources
 - Raw materials, chemicals, electricity, water, transportation...
 - Limited supplies of natural resources could prevent PV from reaching a terawatt scale

- There are huge amounts of wastes and end-of-life modules from any PV technology
 - Limited capabilities to handle/recycle them would prevent PV from reaching a terawatt scale
Status of PV Industry as 12/31/14

- ~180 GW_p global installed capacity
 - Annual revenues ~$250B
 - ~50 GW_p/yr production
 - ~45% annual growth since 2005
 - ~0.5% global electricity capacity
- If 30% by 2100, the industry has to expand >500-fold in 85 years

The potential for PV is enormous!

Growth of PV Industry

Huge ups & downs as an industry in its infancy

European Photovoltaic Industry Association 2015
PV Industry Breakdown 2014

Four commercial technologies

- Wafer-Si (~200 μm): ~91%
 - Multi-Si >55%
 - Mono-Si ~35%

- Thin-film (<5 μm): ~9%
 - CdTe: ~4%
 - Si (amorphous or microcrystalline): ~2%
 - CuIn_{x}Ga_{1-x}Se_{2} (CIGS, x~0.7): ~3%

CdTe Market Share

- CdTe peaked in 2009 (13%) & has been losing market share since
- CdTe will continue to lose, & wafer-Si will continue to gain, market share
Current PV Technologies
Best Research-Cell Efficiencies

Multijunction Cells (2-terminal, monolithic)
- LM = tandem matched
- IMM = inverted, metamorphic
- Three-junction (concentrator)
- Three-junction (non-concentrator)
- Two-junction (concentrator)
- Two-junction (non-concentrator)
- Four-junction or more (concentrator)
- Four-junction or more (non-concentrator)

Thin-Film Technologies
- CIGS (concentrator)
- CdTe
- Amorphous Si:H (stabilized)
- Nano-, micro-, poly-Si
- Emerging PV
 - Dye-sensitized cells
 - Perovskite cells (not stabilized)
 - Organic cells (various types)
 - Organic tandem cells
 - Inorganic cells (CZTSSe)
 - Quantum dot cells

Single-Junction GaAs
- Single crystal
- Concentrator
- Thin-film crystal

Crystalline Si Cells
- Single crystal (concentrator)
- Single crystal (non-concentrator)
- Multicrystalline
- Thick Si film
- Silicon heterostructures (HIT)
- Thin-film crystal

Energy Policy

NREL 2014

Efficiency (%)
Cost: A Well-Known Bottleneck

- Cost is a major bottleneck: $3\times$ today
- But
 - But solar cost is coming down quickly
 - Fossil fuel prices going up quickly
- Would the PV industry take off when fossil fuel prices exceed PV cost?

The answer is likely a NO!

<table>
<thead>
<tr>
<th>Technology</th>
<th>Cost (¢/kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind</td>
<td>~7</td>
</tr>
<tr>
<td>PV</td>
<td>~13</td>
</tr>
<tr>
<td>CSP</td>
<td>~24</td>
</tr>
<tr>
<td>Geothermal</td>
<td>~5</td>
</tr>
<tr>
<td>Hydropower</td>
<td>~8</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>7–11</td>
</tr>
<tr>
<td>Coal</td>
<td>9–12</td>
</tr>
<tr>
<td>Nuclear</td>
<td>~10</td>
</tr>
</tbody>
</table>

2020 Cost of Electricity*

- Solar electricity $3\times$ more expensive than other forms of electricity today
- By 2020 it is likely $<1.5\times$ more expansive according to DOE

* DOE EIA, Annual Energy Outlook 2015
Cost Trend

Historical Module Price

Module price down 4-fold since 2005
System cost down 1.7-fold since 2005

System Costs

Residential & commercial
Utility-scale system $3.45/W_p in 2012

G. Barbose et al, Tracking the Sun VI (2013)
A Bottleneck for Wafer Silicon

- The process to make w-Si modules is costly, energy-intensive and polluting:
 ~4.2 kWh/W_p for monocrystalline Si modules
- Annual production of 3.7 TW_p of mono-Si modules would require ~79% of the 2012 global electricity consumption,* w/o considering transmission losses

* DOE EIA, International Energy Statistics 2014

C.S. Tao et al, SEMSC 95 (2011) 3176
An Alternative Process

- Directional solidification replaces Czochralski growth: 100 kWh/kg down to 15 kWh/kg & less material loss during wafering, but multi-Si ingot

 The industry trades performance for cost!

- Fluidized-bed process may replace Siemens process, but powder formation
Energy Payback Time

1 W_p PV produces
~1.35 kWh/yr in AZ
- ~15% time-averaged output

Energy payback time in Arizona
- Location dependent
- ~3 yrs for mono-Si
- ~2 yrs for multi-Si cells
- After that, installed PV produces net energy

Energy input for various scenarios*

<table>
<thead>
<tr>
<th></th>
<th>Siemens Process</th>
<th>Fluidized-Bed Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mono-Si Module</td>
<td>~4.2 kWh/W_p</td>
<td>~3.3 kWh/W_p</td>
</tr>
<tr>
<td>Multi-Si Module</td>
<td>~3.4 kWh/W_p</td>
<td>~2.5 kWh/W_p</td>
</tr>
</tbody>
</table>

* M. Tao, Terawatt Solar Photovoltaics: Roadblocks and Opportunities (Springer, 2014)
Energy Means Cost

Electricity input for poly-Si is \(~220 \text{ kWh/kg (Siemens)}\)
- In U.S., industrial electricity \(~7\text{¢/kWh}\)
- Electricity cost for poly-Si is \(~$15/\text{kg}: \text{How can the industry profit when the poly-Si price drops below $20/\text{kg?}}\)
 - Use of cheap hydropower, but its capacity limited*
 - Self-generation \(~5\text{¢/kWh}\)
 - Low energy input = low cost + short energy payback time

Electricity consumption for mono-Si PV is \(~4.2 \text{ kWh/W}_p\)
- Electricity cost for 1 \(W_p\) is 29\text{¢/W}_p
- DOE target 50\text{¢/W}_p for modules: HOW?

* N.S. Lewis, MRS-B 32 (2007) 808
Requirements for Terawatt PV

Material requirements
- Abundant material
- Low-cost material
- Energy-efficient synthesis
- Low-cost synthesis
- Low-carbon synthesis
- Minimum health & environmental impact
- Stability & reliability in air & under UV
- Recyclability of end-of-life modules

Device requirements
- High minority carrier lifetime
- High absorption coefficient
 - Direct bandgap
- Broad absorption spectrum
- Suitable bandgap
 - ~1.4 eV
- Both conduction types
- Suitable resistivity

None of the current PV technologies meets all the requirements!

M. Tao, Interface 17(4) (2008) 30
Phenomenal growth
- First to reach $1/W_p$
- Grew 25-fold in 4 years
- But having been losing market share since

What will limit CdTe?
- Known reserve of Te 24,000 tons*
- Best scenario 492 GW_p
- ~0.16% of the 2100 energy demand

CdTe

Abundance of Elements

USGS, Rare Earth Elements – Critical Resources for High Technology 2002

* USGS, Mineral Commodity Summary 2015
What Is Best Scenario?

- Estimation based on material consumption in PV modules and material reserve
 - If there is 10 g of material on the planet and the consumption is 1 g/W_p, only 10 W_p modules can be made
 - The assumption is 100% material utilization
 - All the reserve can be extracted: Some may be too expensive to extract
 - All the reserve exclusively for PV: Other industries may compete for the material
 - No material loss during module fabrication
 - The assumption also include indefinite module lifetime
 - Current modules are typically rated 25 years
 - None of these assumptions can be true – best scenarios
Other Scarce Materials: In

- Multiple issues with CIGS
 - Poor manufacturability: Poor uniformity of three cations
 - Limited availability of In

- Estimation of maximum power from CIGS
 - Known reserve of In 11,000 tons*
 - Composition CuIn$_{0.7}$Ga$_{0.3}$Se$_2$
 - Best scenario 1.1 TW$_p$
 - \sim0.36% of the 2100 energy demand

- Competitions for In
 - FPD, LED, lasers, power devices, etc.
 - Hard for the PV industry to compete

* USGS, Mineral Commodity Summary 2008
Other Scarce Materials: Ag

- Silver used in wafer-Si cells as front electrode
 - Known reserve 530,000 tons*
 - Best scenario 10.1 TW\(_p\)
 - 12 μm Ag assumed
 - 7% surface coverage
 - ~3.3% of the 2100 energy demand
 - Realistically maybe 2%

- Competitions for Ag
 - Solders, brazing alloys, batteries, catalyst, jewelry, silverware...

* USGS, Mineral Commodity Summary 2015

C.S. Tao et al, SEMSC 95 (2011) 3176
Conclusion #2

Without technical breakthroughs, current commercial PV technologies excluding thin-film Si would provide <4% of the 2100 energy demand under best scenarios

<table>
<thead>
<tr>
<th>Cell Technology</th>
<th>Efficiency Used</th>
<th>Limiting Material</th>
<th>Reserve Base (ton)</th>
<th>Maximum Wattage</th>
<th>Averaged Output (TW)</th>
<th>% of 2100 Energy Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wafer-Si</td>
<td>16.8%</td>
<td>Silver</td>
<td>530,000</td>
<td>10.1 TW<sub>p</sub></td>
<td>1.52</td>
<td>3.3%</td>
</tr>
<tr>
<td>CdTe</td>
<td>12.8%</td>
<td>Tellurium</td>
<td>24,000</td>
<td>492 GW<sub>p</sub></td>
<td>0.074</td>
<td>0.16%</td>
</tr>
<tr>
<td>CIGS</td>
<td>14.3%</td>
<td>Indium</td>
<td>11,000</td>
<td>1.1 TW<sub>p</sub></td>
<td>0.165</td>
<td>0.36%</td>
</tr>
<tr>
<td>Thin-film Si*</td>
<td>9.8%</td>
<td>TW capable</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

* Thin-film Si is the only technology capable of terawatt-scale deployment today, but it has lower efficiency and higher cost and is losing market share

C.S. Tao et al, SEMSC 95 (2011) 3176
Annual Production of Materials

- Material production rate limits deployment rate of PV

- Required annual production \sim3 TW$_p$/yr

 - With 92 TW$_p$ total installation & 25-year module lifetime, \sim3.7 TW$_p$ modules will die each year

 - Annual production of 3.7 TW$_p$ will maintain a steady-state 92 TW$_p$ total installation
Annual Production of CdTe

- Annual production of Te ~550 tons*
 - Te to be depleted in 44 yrs
 - Reserve 24,000 tons
 - Best scenario 11 GW_p/yr
 - Realistically maybe 6 GW_p/yr
 - Current production ~2 GW_p/yr by First Solar
 - If First Solar has access to half of the Te produced, i.e. ~3 GW_p/yr
 - Room for growth limited for First Solar: It has to lose market share
 - First Solar has a good business model

But our energy/environmental crisis will not be solved by CdTe

* USGS, Minerals Yearbook 2012
** E. Fortunato et al, MRS-B 32 (2007) 242
Annual Production of Ag & In

- **Wafer-Si** employs Ag front electrode
 - Production of Ag 26,100 tons/yr*
 - Ag to be depleted in 20 yrs
 - Best scenario 498 GWp/yr
 - Realistically maybe 300 GWp/yr, currently ~50 GWp/yr

- **CIGS** *(CuIn$_{0.7}$Ga$_{0.3}$Se$_2$)*
 - Production of In 820 tons/yr & that of Ga 440 tons/yr*
 - In to be depleted in 14 yrs
 - Best scenario 83 GWp/yr
 - Limited by In
Conclusion #3

Without technical breakthroughs, current commercial PV technologies excluding thin-film Si would plateau at <600 GW_p/yr under best scenarios

<table>
<thead>
<tr>
<th>Cell Technology</th>
<th>Efficiency Used</th>
<th>Limiting Material</th>
<th>Annual Production (ton)</th>
<th>Annual Production (GW<sub>p</sub>/yr)</th>
<th>Years to Depletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wafer-Si</td>
<td>16.8%</td>
<td>Silver</td>
<td>26,100</td>
<td>498</td>
<td>20</td>
</tr>
<tr>
<td>CdTe</td>
<td>12.8%</td>
<td>Tellurium</td>
<td>550</td>
<td>11</td>
<td>44</td>
</tr>
<tr>
<td>CIGS</td>
<td>14.3%</td>
<td>Indium</td>
<td>820</td>
<td>83</td>
<td>14</td>
</tr>
<tr>
<td>Thin-film Si*</td>
<td>9.8%</td>
<td>TW capable</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

C S. Tao et al, SEMSC 95 (2011) 3176
Storage of Solar Electricity

- First showstopper: ~3.7 TW$_p$ PV w/o storage
 - The grid can serve as a buffer, to some extent, w/o storage
 - But unlikely to take $>10\%$ from PV w/o storage
 - Current global electricity capacity 5.5 TW*
 - Limits PV capacity to ~550 GW or ~3.7 TW$_p$

- Second showstopper: ~30 TW$_p$ PV w/o conversion
 - In US, 32\% of energy we use is non-renewable electricity**
 - Another 5\% of energy is electricity from hydropower
 - Current global energy consumption ~18 TW
 - If 25\% of energy is non-renewable electricity, i.e. 4.5 TW
 - Limits PV to ~30 TW$_p$ unless solar electricity is converted to a fuel

* DOE EIA, International Energy Statistics 2014
** DOE EIA, Annual Energy Review 2011
Storage Options

- **GW capable**
 - Limited by geology
 - Pumped hydropower
 - Compressed air

- **kW to MW**
 - Various batteries
 - Flywheel
 - Supercapacitor
 - Hear storage
 - Superconducting magnet

Storage Performance

TW scale storage requires GW scale capacity for hours or even days

IRENA, Electricity Storage 2012
B. Dunn et al, Science 334 (2011) 928
Case Study for Batteries

- If 30% from PV by 2100, i.e. 13.8 TW
 - If 50% of solar electricity requires storage, i.e. a minimum of \(\sim 1.7 \times 10^{11} \) kWh to be stored on a daily basis
 - Actually more than 50% due to weather
 - Typical laptop batteries are 50 Wh each
 - At least 473 laptop batteries/person for the 7 billion people on Earth
 - Amounts of natural resources needed to make these batteries?
 - Amounts of wastes and dead batteries to handle?
Recycling of PV Modules

- Stead-state 92 TW_p total installation & 25-year module lifetime
 - 3.7 TW_p/yr modules through their lifetime
 - If these are wafer-Si modules with 16.8% efficiency, there are 2.2x10^4 km^2/yr dead modules
 - The size of New Jersey has to be recycled each year

- CdTe is recycled by First Solar
 - Cd is toxic & Te is rare
 - But many companies are overlooking recycling
Recycling of Si Modules

- With >90% of the market, Si modules are not routinely recycled & technology not ready yet
 - Ag would be depleted in 20 years
 - Pb is toxic
- There are financial incentives to recycle Si modules
 - ~20 g/module of Ag worth $10–30/module
 - 95% recovery and $15–45/oz of Ag
 - ~650 g/module of solar-grade Si worth ~$10/module
 - 90% recovery and $18/kg of poly-Si
 - Savings in energy to purify Si
Cost Contributors

- **Installation**
 - >3/4 of the system cost, especially soft costs
 - Design, permitting, financing, labor, hardware...

- **Energy**
 - Poly-Si and Al frame

- **Raw materials**
 - Ag, Si, glass, Al frame, EVA, backsheet...

- **Processing**
 - Wafering, diffusion, AR coating, metallization, interconnect...
 - Non-vacuum continuous processing

* A. Goodrich et al, SEMSC 114 (2013) 110
Lower Cost by Standardization

One factor: Each PV system is individually designed
- Modules have different power & efficiency
 - Have to accommodate different modules with minimum mismatch
 - Require customized hardware
 - Replacing a bad module in a system is a headache

The reason: Cell efficiency dispersion
- Efficiency ranges 12–18% from “same” process, same ingot
 - Every cell/module has to be tested and sorted (binned)
 - Only cells with similar efficiencies are packaged into a module
 - Only modules with similar efficiencies are connected in an array

- Commercial modules have 2% efficiency dispersion
 - Disqualified cells lead to a higher cost

How to narrow the efficiency spread down to, say, ±0.5%?
Summary

Most PV technologies incapable of making an impact

Strategic R&D directions for a sustainable PV industry

- Wafer-Si based
 - Energy-efficient purification for solar-grade Si
 - Substitution of Ag with an Earth-abundant metal (Cu & Al)
 - Module standardization by cell efficiency uniformization
 - Non-vacuum continuous processing
 - Low-kerf wafering of ingot
 - Recycling of end-of-life cells/modules

- Thin-film Si: lower cost & higher efficiency

- Next-generation PV: Earth-abundant materials

- Terawatt-scale storage of solar electricity

Innovation! Innovation!! Innovation!!!