EPFL

Photonics @EPFL

Swissphotonics Lunch Chat

École polytechnique fédérale de Lausanne

EPFL Photonics Chairs @EPFL 2010-2021

Recent updates:

- Majed Chergui retiring on Oct. 1, 2021.
- Niels Quack leaving to Univ. Of Sydney.
- New Professors (2022):
 - PATT Cristina Benea-Chelmus (from Harvard)
 - Full Prof. Kirsten Moselund (also PSI)

EPFL Public Funding of Photonics Chairs

EPFL <u>http://photonics.epfl.ch</u>

SWISS*PHOTONICS

EPFL Photonics companies in Romandy

EPFL Startups related to Photonics 2010-2020

2020	VisualStructure		ORYL Photonics Light for Life	🔆 Rea	adily3D	Contract
2019	💥 Early Sight		SwissSource	VPS ~~	O ₩http://doi.00	⊙● MIRA ex
2018	SwissLumix shining light on biology		OCULIGHT dynamics	e Micro	0R _{systems}	Candleligh t Systems
2017	WE Viventis Microscopy		📚 CREAL3D			
2016	R AYFORM		insolight	🔰 Inn	oview	ART MYN (re)discover Art
2014	⊖ DNAwatch		Lunaphore	Morph	2015	€GΛΜΛΥΛ
2013			★ fastree 3D	S N	amanTree Aedical SA	
2010		2011	abionic	2012 L.E.S	5.S.	

Life science

10 Professors10 Labs

EPFL Life science 1 of 4

Prof. Hatice Altug BIOS - Bionanophotonic Systems Laboratory

- Nanophotonics and its application in optical devices, biosensing, bioimaging & Mid-IR spectroscopy
- Lab-on-a-chip integration of photonics, microfluidics and data science for disease and point-of-care diagnostics
- Novel nano/microfabrication and bionanopatterning methods

Prof. Ardemis Boghossian

LNB - Laboratory of Nanobiotechnology

- Synthetic biology and protein engineering to engineer lightharvesting bioenergy
- Laser-excited fluorescence of singlewalled carbon nanotubes (SWCNTs) used for optical biosensing and bioimaging for near-IR in-vivo applications

Prof. Suliana Manley LEB - Laboratory of Experimental

Biophysics

- Super-resolution fluorescence microscopy (PALM, STORM, PAINT, SIM).
- High-throughput, automated, and intelligent microscopy.

EPFL Life science 2 of 4

Prof. Christophe Moser LAPD - Laboratory of Applied Photonics Devices

- Volumetric 3D printing method based on tomography (entire solidification at once).
 3D printing of functional human tissues (ENLIGHT project).
- High-resolution retinal imaging with new technique called trans scleral optical phase imaging.

Prof. Demetri Psaltis LO - Optics Laboratory

- Optical imaging techniques for the diagnosis of hearing loss due to deterioration of colchea.
- Imaging in complex media such as biological tissues.

Prof. Aleksandra Radenovic LBEN - Laboratory of Nanoscale Biology

- Single-molecule manipulation using optical tweezers and optical wrench.
- New modalities in super-resolution microscopies capable of molecular-scale resolution (SMLM, SIM and SOFI)*

EPFL Life science 3 of 4

Prof. Sylvie Roke LBP - Laboratory of Fundamental BioPhotonics

- Develop nonlinear optical technology such as second harmonic scattering, sum frequency scattering, wide-field multiphoton microscopy, ultrafast spectroscopy
- Generating molecular level understanding of aqueous systems & interfaces driven by new technology.

- **Dr. Arne Seitz** BIOP - Biolmaging and Optics Platform
- The BioImaging and Optics Platform (BIOP) provides instruments and expertise to solve challenging (biological) questions with modern light-microscopy.

Prof. Michaël Unser

LIB - Biomedical Imaging Laboratory

- Development of new algorithms and mathematical tools for biomedical imaging
- Advanced image reconstruction
- Super-resolution microscopy
- Phase imaging (diffraction tomography, unwrapping)
- Deep learning for inverse problems

EPFL Life science 4 of 4

Dr. Georges Wagnières

LIFMET - Laboratory for Functional and Metabolic Imaging

- Cancer detection and characterization by fluorescence spectroscopy and imaging.
- Light dosimetry and tissue optical spectroscopy.
- Photobiomodulation and Photodynamic therapy.
- Study of the metabolism by time-resolved luminescence spectroscopy.

EPFL Altug/BIOS - Metasurfaces for biosensing

Hatice Altug and A. Belushkin

Portable device helps doctors diagnose sepsis faster, 2020.

https://youtu.be/sDjux6M0evw

In EPFL News: Link

<u>"Imaging-based spectrometer-less</u> optofluidic biosensors based on dielectric metasurfaces for detecting extracellular <u>vesicles«</u>, Y. Jahani et al. Nature Communications, 31 May 2021.

In EPFL News: Link

Fundamental science

5 Professors 5 Labs

EPFL Fundamental science 1 of 2

Prof. Jean-Philippe Brantut LQG - Chair in Physics of Quantum Gases

- Cavity quantum electrodynamics
- Ultra-cold and strongly correlated quantum matter
- Quantum simulation with neutral atoms

Prof. Majed Chergui LSU - Laboratory of Ultrafast Spectroscopy

- Probing in "real-time" the structural evolution of crystals, molecules or proteins in the course of a phase transition, a reaction or a (bio)chemical function.
- Optical domain ultra-fast spectroscopy, and time-resolved Xray spectroscopy.

Prof. Christophe Galland LQNO - Laboratory of Quantum Nano-Optics

- Quantum optics, spectroscopy of nanoscale hybrid systems
- Frequency conversion
- Quantum sensing

EPFL Fundamental science 2 of 2

Prof. Tobias Kippenberg LPQM1 / K-LAB - Laboratory of Photonics and Quantum Measurements

- Discovery of chip-based frequency combs ('Microcombs') in different photonic platforms i.e. Si₃N₄ and GaP
- Developed cavity quantum optomechanics, techniques to manipulate mechanical oscillators in the quantum regime
- Superconducting circuit electro-mechanics

Prof. Vincenzo Savona LTPN - Laboratory of Theoretical Physics of Nanosystems

- Study and modeling of open quantum systems, i.e. influenced by the surrounding environment in the form of driving, losses, and phase noise.
- Modelling and optimization of artificial photonic nanostructures (e.g. with machine learning).

EPFL Kippenberg/k-lab - Cavity Quantum Optomechanics

Quotes from Literature:

"A major achievement of the past decade has been the realization of macroscopic quantum systems by exploiting the interactions between optical cavities and mechanical resonators"⁵²

"Since this first demonstration, resolvedsideband cooling has been the workhorse of most experiments aimed at observing quantum effects in macroscopic mechanical resonators"¹⁷

⁵²Alba, R. D. *et al.* Tunable phonon-cavity coupling in graphene membranes. *Nat Nano* **11**, 741–746 (2016).

¹⁷Jayich, A. B. Ten years of Nature Physics: Frozen motion. *Nat Phys* **11**, 710–711 (2015).

Mechanical systems in the quantum regime utilizing cavity optomechanical and electromechanical coupling for past research at EPFL

EPFL

NAME EVENT / NAME PRESENTATION

Components & Systems

13 Professors 13 Labs

EPFL Components & Systems 1 of 5

Prof. Camille Brès PHOSL (IEL) - Photonic Systems Laboratory

- Optical waveguide engineering for enhancing nonlinear optical processes and light generation
- Integrated nonlinear optics for frequency conversion
- All-optical signal processing
- Versatile fiber lasers
- Supercontinuum, optical frequency combs

Prof. Edoardo Charbon AQUA - Advanced Quantum Architecture Laboratory

- Single Photon Avalanche Diodes (SPADs) for Light Detection And Ranging (LiDAR), Microscopy and Quantum random number generation and other quantum applications.
- Superconducting Nanowire Single Photon Detectors (SNSPD) for quantum applications.

Prof. Anna Fontcuberta i Morral LMSC - Laboratory of Semiconductor Materials

 Synthesis and characterization of novel materials and structures (nanowires) for semiconductor technologies for e.g. solar energy harvesting and next generation computing.

EPFL Components & Systems 2 of 5

Prof. Nicolas Grandjean LASPE -

Laboratory of Advanced Semiconductors for Photonics and Electronics

Wide bandgap semiconductors (group-III nitrides) for:

- Quantum Dots and Nanostructures
- 2D and 1D Photonic Crystals
- Short-Wavelength Optoelectronics

- Optical trapping in photonic crystal structures
- Non-linear optics in photonic crystal structures

Prof. Tobias Kippenberg

LPQM Laboratory of Photonics and Quantum Measurements

- Chip-based frequency combs ('Microcombs') in different photonic platforms i.e. Si₃N₄ and GaP
- Cavity quantum optomechanics, techniques to manipulate mechanical oscillators in the quantum regime
- Superconducting circuit electromechanics

EPFL Components & Systems 3 of 5

Prof. Andras Kis LANES - Laboratory of Nanoscale Electronics and Structures

- Science and technology of 2D semiconductors and heterostructures for optoelectronic, electronic and spintronic device applications
- Growth and integration of 2D materials

Prof. Olivier Martin NAM - Nanophotonics and Metrology Laboratory

- Nanophotonics and in particular plasmonic structures with applications in optical signal processing, integration and biosensing.
- Techniques: heterodyne SNOM, spectroscopy and time-resolved measurements, etc.

Prof. Christophe Moser LAPD - Laboratory of Applied Photonics Devices

- Volumetric 3D printing method based on tomography. 3D printing of functional human tissues.
- High-resolution retinal imaging with new technique called trans scleral optical phase imaging.
- Optical fiber imaging using multimode fibers and neural networks.

EPFL Components & Systems 4 of 5

Prof. Demetri Psaltis LO - Optics Laboratory

- Optical imaging techniques for the diagnosis of hearing loss due to deterioration of colchea.
- Imaging in complex media such as biological tissues.

Prof. Fabien Sorin FIMAP - Laboratory of Photonic Materials and Fiber Devices

- Nano-scale fabrication on unconventional substrates (large area, 1D, flexible, stretchable, etc.) via fluid flow engineering
- Micro- and nanostructure-based photonic devices and Metasurfaces
- Multi-material fibers for energy harvesting, sensing and actuation

Prof. Luc Thévenaz GFO - Group for Fibre Optics

- Distributed optical fibre sensing
- Opto-acoustics in optical fibres
- Light-atom interaction using optical fibres

EPFL Components & Systems 5 of 5

Prof. Yves Bellouard GALATEA - Galatea Laboratory

- 3D Manufacturing
- Systems made out of single monoliths
- Packaging of complex optical systems
- Transforming materials locally with lasers

EPFL C. Moser/LAPD & D. Psaltis/LO – Analog Optical Computer with multimode fibres

"These studies show that the analog optical computer based on the MMF is power efficient, versatile and obtains performance comparable with that obtained by digital computers when solving the tasks we investigated."

"Optical technology can slash the energy required by AI" (EPFL News, August 2021)

Article in Nature Computational Science, 20 August 2021

6 Professors 6 Labs

EPFL

EPFL | Photonics

EPFL Photovoltaics & Energy 1 of 2

Prof. Christophe Ballif PVLAB - Photovoltaics Laboratory

- Thin-film technology, semiconductors, TCOs, light management
- Manufacturing processes, production technologies for PV and small-scale production for solar cells and modules
- Specialty filters, colored photovoltaic cells and panels, packaging polymers and reliability

Prof. Michaël Graetzel LPI -Laboratory of Photonics and Interfaces

- Graetzel cells: Dye-sensitized solar cells with adjustable transparency (installed on the Swiss Tech Convention Center)
- Metal halide perovskite solar cells: ultra-thin active layers, high efficiencies, low cost, stability issues to be solved
- Generation of chemical fuels from sunlight.

Prof. Jacques-Édouard Moser GR-MO - Photochemical Dynamics Group

- Ultrafast photoinduced charge and quasi-particle dynamics
- Development of novel spectroscopic techniques

EPFL Photovoltaics & Energy 2 of 2

Prof. Mohammad K. Nazeeruddin GMF, SCI SB MN - Group for Molecular Engineering of Functional Materials

- Molecular engineering of functional materials for photovoltaic and light-emitting applications.
- Compositional and structural optimization of dye-sensitized and perovskite solar cells.
- Organic light emitting diodes (OLEDS) by engineering highly phosphorescent emitters.

Prof. Giulia Tagliabue LNET - Laboratory of Nanoscience for Energy Technologies

- Perfect light absorbers for photothermal and photochemical energy conversion devices
- Fundamental understanding of plasmonic hot carrier photodetectors and photocatalysts
- Design of tunable metalenses

Prof. Anna Fontcuberta i Morral LMSC - Laboratory of Semiconductor Materials

 Synthesis and characterization of novel materials and structures (nanowires) for semiconductor technologies for e.g. solar energy harvesting and next generation computing.

EPFL Michael Grätzel/LPI – Dye Sensitized Solar Cells

"Exactly 30 years ago, in 1991, Michael Grätzel and his research group realized a new kind of solar cell: the dye-sensitized solar cell, DSC, or Grätzel cell.⁵"

Power-conversion efficiency of 25.6% and operational stability at least 450 hours of perovskite solar cells

News EPFL, 20 April 2021

EPFL | Photonics

Cf. Review article in Chemical Society Reviews 2021 (Open Access)

⁵B. O'Regan and M. Grätzel, Nature, 1991, 353, 737–740.

Laser manufacturing

2 Professors2 Labs

EPFL Laser Manufacturing 1 of 1

Prof. Yves Bellouard GALATEA - Galatea Laboratory

- 3D Manufacturing
- Transforming materials locally with lasers

Prof. Christophe Moser LAPD - Laboratory of Applied Photonics Devices

 Volumetric 3D printing method based on tomography. 3D printing of functional human tissues.

EPFL Yves Bellouard/Galatea – Ultrafast laser 3D manufacturing and transforming

3D metal freeform micromanufacturing

Complex (Maltese cross) 3D structure produced in pure silver and pure copper (from a quartz glass mold)

Tailoring stress states and mechanical properties of transparent materials

EPFL Imaging

EPFL | Photonics

Prof. Fabrizio Carbone LUMES - Laboratory for Ultrafast Microscopy and Electron Scattering

Prof. Romuald Houdré SCI-SB-RH - Group of Prof. Romuald Houdré

Dr. Georges Wagnières LIFMET - Laboratory for Functional and Metabolic Imaging

Prof. Christophe Moser LAPD - Laboratory of Applied Photonics Devices

Prof. Demetri Psaltis LO - Optics Laboratory

Prof. Aleksandra Radenovic LBEN - Laboratory of Nanoscale Biology

Dr. Arne Seitz BIOP - BioImaging and Optics Platform

EPFL Center for Quantum Science and Engineering

33

Dep. dir. Cristina Benea-Chelmus

Dir. Vincenzo Savona

Other Photonics Professors in the governance of the center

EPFL launches new Center for Quantum Science and Engineering: <u>Article</u> (31 August 2021)

Other Photonics Professors active in the field

Platforms / infrastructure / Centra

EPFL | Photonics

EPFL Platforms and infrastructures

Center of MicroNanoTechnology (CMI)

The CMi is a complex of clean rooms and processing equipment for the training and scientific experimentation devoted to the users of microtechnologies.

Clean Rooms

IPHYS has extensive facilities for micro- and nanofabrication and characterization, including specialized III/V lab clean rooms, thin films deposition, dry etching, lithography, electron and atomic force microscopy, and photo- and cathodo-luminescence. These are also open for use by interested researchers from other Institutes at EPFL.

EPFL EU-Funding to help SMEs take up photonic technologies *

- PhotonHub is <u>THE</u> Digital Innovation Hub for the field of Photonics in Europe
- Largest Photonics EU project ever! (H2020) 19 M€ grant
- European Commission's aim: spread photonic technologies in innovative SMEs' products
- Comprehensive support to SMEs:
 - > Training
 - Test before invest (prototyping/upscaling/manufacturing)
 - More competitive products
 - Find investments
- Swiss partners (and 3rd party):
 - EPFL, CSEM, Ligentec (and Swissphotonics)

PHOTONICS INNOVATION HUB FOR EUROPE

www.photonhub.eu

EPFL EU-Funding to help SMEs take up photonic technologies

www.photonhub.eu

PHOTONICS INNOVATION HUB FOR EUROPE

5000 + photonics SMEs

Associated to 100s of Universities and RTOs

260.000 high-potential SMEs for photonics innovation

EPFL EU-Funding to help SMEs take up photonic technologies

EPFL EU-Funding to help SMEs take up photonic technologies

Innovation projects:

Project Level	Anticipated Average Innovation Project Budget	PhotonHub Subsidy	Max. Subsidy	No. of projects permissible
Prototyping (TRL3-4)	40k€	For SMEs: 100% of the first 30K€; thereafter (incl. follow-on projects) 75% subsidy with the company contributing 25% in-cash For LSCs: 50% subsidy on all costs	100K€ per innovation project	Max. of 1 follow-on project per company at the prototyping level
Jpscaling TRL5-6)	161K€	For SMEs: 50% subsidy for first users & early adopters <u>at this level</u> , with the companies contributing 50% in-cash; 0% subsidy if the company is not a first user or early adopter For LSCs: 0% subsidy on all costs	250K€ per innovation project, of which of which cascade funding can be provided up to a maximum of 150K€	Max. of 1 follow-on project per company at the upscaling level
/lanufacturing TRL7-8)	2K€	100% subsidy for all companies	2K€	1 subsidised engagement only

Innovate with the technology of light: Apply here! (www.photonhub.eu)

Contact the EPFL team for guidance, advice & support: PhotonHub@epfl.ch

THANK YOU!

Introductory online courses in Photonics Innovation: https://www.photonhu b.eu/introductoryphotonics-innovation/ EPFL: Nov.17, 14:00-18:00 Ligentec: Dec. 7, 9:30-13:30

CSEM: Dec. 15, 14:00-18:00

SWISS*PHOTONICS

Pierre-Yves Fonjallaz PhD Responsible Romandy Specialist EU funding c/o EPFL AVP-R-ReO BI A2 435, Station 7 CH-1015 Lausanne +41 21 693 41 18

EPFL team for PhotonHub Europe: PhotonHub@epfl.ch

Elisa Guillermain, Project manager Prof. Yves Bellouard, PI EPFL P-Y Fonjallaz, Swissphotonics