

National Fiber Laboratory - SNFL

Connectors for Advanced Fiber Systems: Introduction

Valerio Romano Losone, June 26, 2014

of Applied Sciences

UNIVERSITÄT BERN

In cooperation with the CTI

KTT-Support National thematic networks

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Commission for Technology and Innovation CTI

Content

. . .

- 1. Driving forces for growth in fiber markets
 - Energy consumption of data centers
 - Specialty optical fibers

- 2. Swissphotonics National Fiber Laboratory SNFL
- 3. Short overview of labs at IAP Bern

1.1 Data Centers' need for el. power...

DATA CENTRE

IT now 10 percent of world's electricity consumption, report finds

New analysis finds IT power suck has eclipsed aviation

By Jack Clark, 16 Aug 2013 Follow 4,86	5 fol Nort	th America					
	Ran	k	2012	2013	% Increase		
	1\$	Canada	910	990	8.8%		
	2nd	USA	9,900	10,560	6.7%		
		NAM	10,810	11,550	6.8%		
	Euro	Europe					
	Ran	k	2012	2013	% Increase		
	1\$	Poland	90	120	33.3%		
	2nd	Turkey	135	175	29.6%		
	Зrd	Russia	860	1,005	16.9%		
	4th	Other markets	340	390	14.7%		
	5th	Nordics	440	500	13.6%		
	6th	UK	2,850	3,100	8.8%		
	7th	Switzerland	370	400	8.1%		
	8th	Germany	2,700	2,850	5.6%		
	9th	France	1,650	1,730	4.8%		
	100	h Netherlands	820	845	3.0%		
	11th	n Belgium + Lux	300	305	1.7%		
	12t	n Spain	1,000	960	-4.0%		
	13th	n Italy	1,150	1,090	-5.2%		
		EUROPE	12,705	13,470	6.0%		


Total datacenter power needs (world, in MW):

and the second se			
Total	36,245	38,640	7.2%
	Contract on the second	Sucher Index and a	and the second

1.2 ... increases need for fibers, components and silicon photonics that interfaces with fibers

EU seeks to reduce world's energy usage, and double data center speeds, by replacing copper with fiber

/100 for fiber -SiPhot

1.3 2nd driving force: Specialty optical fibers

Size of complete specialty optical fibers market (incl. sensor fibers, active fibers, microstructured opt. fibers) : 1'000 M\$

- Continuous growth in high power active fibers for fiber lasers (100M\$), fibers for sensing and MOFs
- Specialty optical fibers are of different glass materials and shapes -> need connectors to combine different fibers and functionalities

1.4 Fiber Systems, Lasers: «All-In-Fiber»

- One strength of fiber systems: no alignement and service as long as all in fiber
 - connectors can be a key component
- Weakness of fibers: some optical effects are difficult to be obtained in fibers (eg. 2nd harmonic generation, electrooptical switching,...)
 - integrate these functionalities in connectors.

2.1 SNFL and its goals

Gather the expertise in Switzerland in the field of fibers, fiber lasers and applications

> Offer:

>design of active / passive / microstructured fibers

>drawing of fiber prototypes (Fiber Rapid Prototyping)

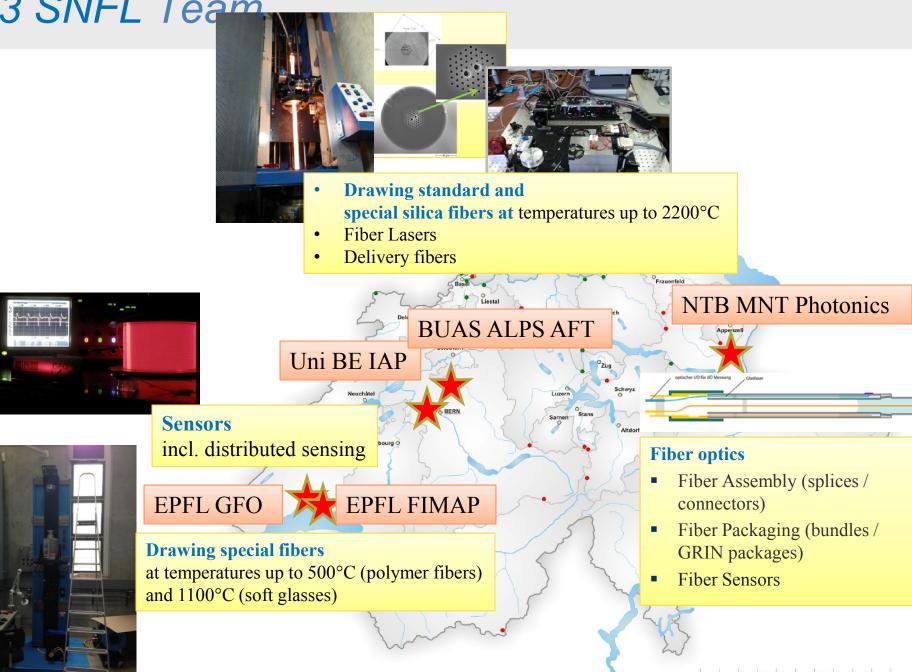
➢ fiber characterisation

>development of applications

beam delivery, shaping

➢ light sources

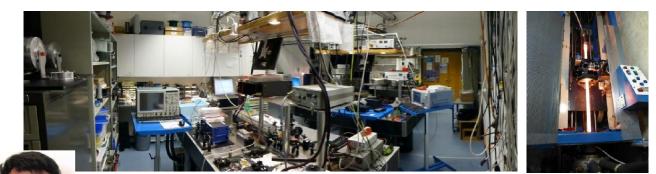
➤ fiber lasers


>interfacing («all in fiber», fiber<>integrated systems)

Despite the absence of industrial fiber drawing capability in Switzerland

2.2 SNFL Team (from west to east)

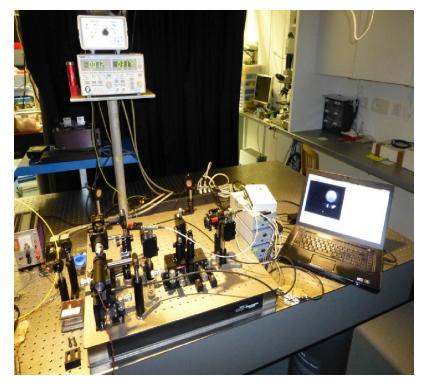
- > EPFL, Group for Fiber Optics (GFO), Luc Thévenaz
- EPFL, Laboratory of Photonic Materials and Fibre devices (FIMAP), Fabien Sorin
- University of Bern, Institute of Applied Physics (IAP), Fibers and Fiber Lasers Group, Manuel Ryser (V. Romano)
- Bern University of Applied Sciences, ALPS, Applied Fiber Technology group, Valerio Romano (Contact person)
- Fachhochschule Ostschweiz (NTB), Institute for Micro- and Nanotechnology - Photonics group, Markus Michler


2.3 SNFL Team

3.1 People and labs IAP BE and BUAS Burgdorf

Collaboration between: Inst. of Appl. Physics, IAP Uni Bern and Inst. for Applied Lasers, Photonics and Surface Technology ALPS of BUAS:

applications of modern fibers


- fiber lasers and amplifiers
- materials processing,
- sensing, metrology,
- light sources
- fiber beam delivery
- beam shaping

Two labs: one in Bern, one in Burgdorf

At present: 11 people

3.2 Fiber Characterisation, processing, handling

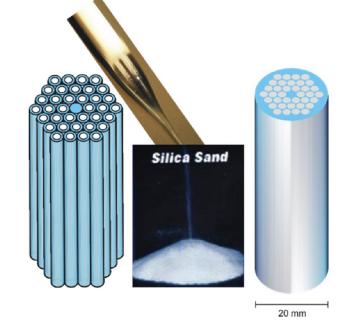
R.I.P.: 1D- Refractive index profiler (Master Thesis Jonas Scheuner, IAP Bern)

2D-version: Bachelor thesis at BUAS

Characterisation:

- Losses
- Spectroscopy
- Index profile

Processing:


- Cleaving
- Splicing
- Tapering

3.3 Key tecnology: Fiber Rapid Prototyping

800 µm

100 µm

800 µm

Berner Fachhochschule Haute école spécialisée bernoise

ern University of Applied Sciences

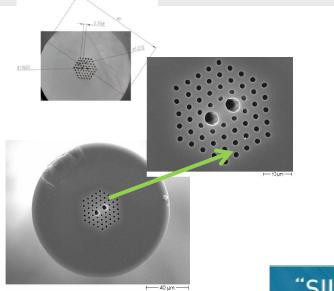
UNIVERSITÄT

Granulated silica is used to produce preforms with any microstructure

Small Tube (3 x 5 mm)

RE₂O₃:Al₂O₃ Doped SiO₂-Sand

Large Tube (16 x 19 mm)


- Undoped SiO₂-Sand

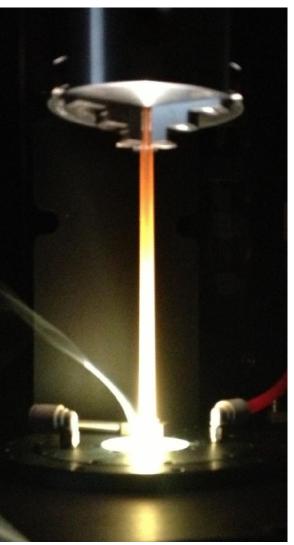
*method patented by Silitec SA,

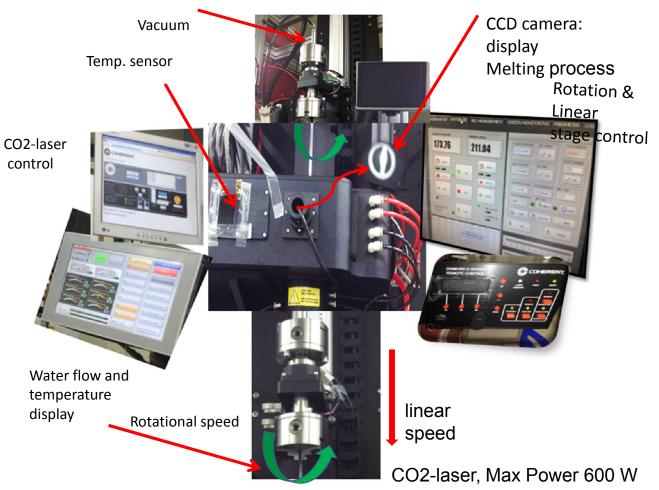
Boudry


3.4 Example: microstructured fibers

erner Fachhochschule UNIVERSITÄT laute école spécialisée bernoise rn University of Applied Sciences

Fiber diameter: 170µm Core diameter (d): 21 µm Hole diameter: 7 µm




—— 100 µm ——— I

3.5 Further improvement

«Traveling Small Zone» (TSZ) Laser Vitrification

3.6 Core rods comparison

Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences **BERN**

 $u^{\scriptscriptstyle b}$

- 3 at% Al2O3

- 0.2 at % Yb2O3
- 2 at% P2O5
- SiO2 :
- grain size 100 -200 µm

5X iterative milling and sintering

3 at% Al2O3 2 at% P2O5 0.3% Yb2O3 grain size ~80 -100

- 7 X iterative milling/ remelting and

> Laser-based travelling small zone vitrification

3.8 Losses of Powder in tube fibers

Method	Who	Losses	Remarks
Granulated Silica, unvitrified	IAP	1-5 dB/m @633nm	
Fine powder	XLIM/IAP	1 < 0.1 dB/m	Evacuation difficult
Granulated Silica, not remelted, vitrified	IAP	0.8 dB/m @633 nm	Much better for undoped material
Sol-Gel granulated silica, remelted, vitrified regularly	IAP	0.35 dB/m @633nm	Some bubbles (fiber piecewise good)
Powder in tube, stack and draw	FORC, RAS	0.1 dB/m @1200 nm	
Sol-Gel Granulated Silica, TSZV	IAP	0.2 dB/m @633 nm	0.035 dB/m@ 1100nm ?

I wish you a fruitful Workshop and many interesting discussions