Photonic Crystal Fiber

Technology, Termination & Examples of Industrial Usage

Nicolai Granzow
123 years of industrial history

1891

~9,000 employees

2014

SuperK • Koheras • Crystal Fibre • aeroPULSE

Proprietary and Confidential

NKT

Photonics
the power of light
Ownership

› Europe › Northern Europe › NKT Photonics
› North America › Central Europe › LIOS Technology
› Oceania › Eastern Europe › Vytran
› Asia › China
Our products

- Crystal Fibre: Specialty fibers and modules
- SuperK: Supercontinuum lasers
- Koheras: Industrial low noise DFB lasers
- Argos: High Power OPOs
Overview

Technology

Termination

Industrial Usage
Our platform: photonic crystal fibers

Gain modules & fibers

Nonlinear fibers

Fiber delivery systems

Hollow core PBG fibers
Step index fiber
Solid-core photonic crystal fiber

- Effective refractive index
 - Coating
 - Cladding
 - Core

- d, A
Hollow-core photonic crystal fiber
How to make photonic crystal fibers

Diagram showing the process of making photonic crystal fibers.
Different fiber structures
The NKT Photonics PCF line

- Single mode fibers
- Large mode area fibers
- Active fibers
- Rod fibers
- Highly nonlinear fibers
- Polarization maintaining fibers
- Hollow core fibers (photonic bandgap fibers)
- Fibers for spectral filtering
- Custom design
LMA fibers

Applications:
Delivery of single mode and high power light over a range of wavelengths

Key Features and Benefits
• Endlessly single mode
• High power handling
• Low nonlinearities
• High beam quality
• Terminations and patch-cord options
Nonlinear fibers

Applications:
• Supercontinuum generation
• Frequency conversion
• Optical parametric amplification
• Four-wave mixing

Key Features and Benefits
• High nonlinear coefficients
• Single mode
• Zero dispersion at various wavelengths
Common pump wavelengths

Most fibers are optimized for pumping at major laser wavelengths:

- 800 nm
- 1060 nm
- 1550 nm
Hollow core fibers

Hollow core guides light
⇒ Light matter interaction dramatically reduced

Propagation in the cladding is inhibited by photonic bandgap effect
• Transmission band well-defined; like a notch filter.
• Dispersion follows similar trend for all fibers as shown in this example
Hollow core fibers

Applications
• Pulse delivery
• Spectral filtering
• Sensors, gyroscopes

Key Features and Benefits
• Reduced interaction with silica
• Low nonlinearity
• Insensitivity to bending, radiation, magnetic fields, and thermal fluctuations
• Unique dispersion properties
• Long interaction length with gases
Hollow core fibers

Visible wavelength fibers

HC-440-02 HC-532-02 HC-580-02 HC-633-02

Near Infrared fibers

AIR-6-800 HC-1060-02 HC-1550-02 HC-2000-01
HC-800-01 HC-1550-04 HC-1550-PM-01 HC19-1550-01
Termination

- End seal and cleave / end caps
- Connectorization
 - FC/PC, FC/APC, PM
 - SMA-905
- Splicing to standard pigtails
- Tubing (up to 5 meters)
 - 3 mm PVC / 900 micron loose tube
 - Flexible steel tube
- Standard assemblies
End-sealing (solid core fibers)
Overview

- Technology
- Termination
- Industrial Usage
Industrial usage: gain modules for lasers

- aeroGAIN-ROD-PM85
- aeroGAIN-ROD-PM55
- aeroGAIN-FLEX, aeroGAIN-BASE, DC-200/40-PZ-Yb
- DC-135/14-PM-Yb

~50X difference in peak power handling
Industrial usage: gain modules for lasers

- Rods permit larger pulse energy and higher peak power
- Diffraction limited beam quality
- Large effective area
- Polarization-maintaining
- AR coated end-caps
Industrial usage: gain modules for lasers

... and many more
Industrial usage: fiber delivery

aeroGUIDE-Power – broadband high power PM fiber delivery

Polarization maintaining

Attenuation < 10 dB/km
Mode field diameter ~ 12.6 µm

SMA high power connector
1 ns, 4.3 mJ pulses with 4.5 MW peak power

3.8 GW peak femtosecond CPA system

4 kW single mode amplifier chain

167 W cw power at 1178nm

18 W cw at 532 nm (Verdi)

...
Industrial usage: white light lasers

Lamps

Pro: Cheap, compact, robust
Con: Brightness, lifetime

Lasers

Pro: Bright, single-mode, lifetime
Con: Single line
What is a supercontinuum source?

• **Bright** as a laser, **broad** as a lamp
• **Continuous** spectrum in the visible and nIR
• Continuously **tunable** over hundreds of nanometers
• **Fiber delivered**, **diffraction limited** output
• **Stable** and very **reliable** all-fiber system with zero maintenance
Supercontinuum generation

fiber with suitably designed dispersion and nonlinearity
SuperK Series

Fiber based modelocked pico-second oscillator

Pre amp

Booster amp

NL-fiber

Driver and control electronics

SuperK • Koheras • Crystal Fibre • aeroPULSE

Proprietary and Confidential
Modular system architecture

Top layer
OEM specific
(e.g. SELECT and integrated RF Driver)

Middle layer
booster-amp module
with spliced PCF
(SCG and guide fiber)

Ground layer
seeder and pre-amp
modules, power supply, PCBs
All purpose lab tool

- Plug & play fiber delivery, splitters and filters
- Replaces multiple single-line and broadband sources
SuperK EXTREME – wavelength range

Power [mW/nm] vs. Wavelength [nm]

- EXR-20
- EXW-12
- EXB-6
SuperK EXTREME – cut-in wavelengths

<table>
<thead>
<tr>
<th>Model</th>
<th>Min. [nm]</th>
<th>Max. [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXB-series</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXB-1</td>
<td>~435</td>
<td>~2200</td>
</tr>
<tr>
<td>EXB-4</td>
<td>~415</td>
<td>~2300</td>
</tr>
<tr>
<td>EXB-6</td>
<td>~405</td>
<td>~2300</td>
</tr>
<tr>
<td>EXW-series</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXW-1</td>
<td>~500</td>
<td>~2200</td>
</tr>
<tr>
<td>EXW-4</td>
<td>~470</td>
<td>~2300</td>
</tr>
<tr>
<td>EXW-6</td>
<td>~465</td>
<td>~2350</td>
</tr>
<tr>
<td>EXW-12</td>
<td>~455</td>
<td>~2400</td>
</tr>
<tr>
<td>EXR-series</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXR-1</td>
<td>~615</td>
<td>~1750</td>
</tr>
<tr>
<td>EXR-4</td>
<td>~535</td>
<td>~2050</td>
</tr>
<tr>
<td>EXR-15</td>
<td>~475</td>
<td>~2350</td>
</tr>
<tr>
<td>EXR-20</td>
<td>~470</td>
<td>~2400</td>
</tr>
</tbody>
</table>
NKT photonic crystal fiber is the key technology enabling

- high brightness SC generation
- efficiency
- reliability, therefore low TCO

Proprietary collimator

- diffraction limited
- achromatic
- highest pointing accuracy
- true single mode
- fiber coupling >70%
Tunable like no other source

Choose between:

- Full broadband output
- Up to 8 tunable channels simultaneously
- Single line variable bandwidth tunable channel
Scientific applications

- OCT
- FLUORESCENCE MICROSCOPY
- FLIM / FRET MICROSCOPY, TCSPC
- TRANSIENT SPECTROMETER
- FLOW CYTOMETRY
- SURFACE PLASMON / METAMATERIAL RESEARCH
- BRAGG GRATING / FIBER CHARACTERIZATION
- COMBUSTION MONITORING / FLAME DIAGNOSTICS
- all purpose lab light source

http://www.nktphotonics.com/side5415.html
Leica TCS SP8 X
Test & measurement / characterization

SuperK COMPACT

SuperK Split

OR

SuperK EXTREME

Passive optical device (WDM, fiber,..)

Plug & Play

OSA 350-1750nm

OSA 1200-2400nm
Examples of OEM customers

- Leica confocal microscopes
- LaVision BioTec ultra microscopes
- ART molecular imaging systems
- Hamamatsu streak cameras
- Horiba Scientific FLIM systems
Major scientific customers

- NIST
- MIT Massachusetts Institute of Technology
- Stanford University
- Caltech
- Harvard University
- Fraunhofer IOF
- GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN
- Technische Universität Braunschweig
- JKU Johannes Kepler Universität Linz
- Tsinghua University
- Fudan University
- Osaka University
- INSP Institut des NanoSciences de Paris
- CNRS
- ESCP EUROPE
- l'Observatoire de Paris
- Institut Fresnel Marseille
- IPCMS

Proprietary and Confidential
Questions?

ngr@nktphotonics.com