

All in Fiber Systems for Material Processing

U. Dürr / Rofin-Lasag

SWISS TRADITION FOR WORLDWIDE PRECISION

All In Fiber Systems U.Dürr / Rofin-Lasag

rofin

Fiberlaser + Transport Fiber + beam Control

rofin

cw /cw-modulated / qcw /pulse shape /pulsed(not UFL)SM because of mode stability and beam quality

Advantages:

SM high power /average power/stable wavelength flexibility

Fundamental Problems:

Backreflection / fiber damage Raman (power loss/ damage fiber laser) Linewidth (limits in efficiency of nl effects) Coupling losses (heat damage)

NUMATCH

Connecting High Performance Fiber Laser & Amplifer Components

Fiberlaser + Transport Fiber + beam Control

rofin

cw /cw-modulated / qcw /pulse shape /pulsed(not UFL)SM because of mode stability and beam quality

<u>Advantages:</u> SM high power /average power/stable wavelength flexibility

Fundamental Problems:

Backreflection / fiber damage Raman (power loss/ damage fiber laser) Linewidth (limits in efficiency of nl effects) Coupling losses (heat damage)

Optoskand fundamental fiber technology

- **Mode stripper** Surface treatment that remove all cladding modes.
- **Quartz block** Bonded fused silica end cap. Decrease surface power density.
- **AR-coating** Remove Fresnel losses.

OPTOSKAND

Fiberlaser(SM) + Transport Fiber

cw /cw-modulated / qcw /pulse shape /pulsed(not UKP)SM because of mode stability and beam quality

rofin

Fundamental Problems: Influence of optical components and application on Fiberlaser **Backreflection** / fiber damage/Laser damage

LMA Double Clad Fibers

	Singlemode "SM"	Multimode "MM"	Large Mode Area "LMA"
# Signals	1	~ 1000	2 to 5
Core Size (microns)	3 - 10	50 – 150	15 - 50
NA	0.12 – 0.20	0.20 – 0.35	0.05 – 0.10
Bend Loss for 30um co 1e+4 1e+3 1e+2 1e+1 5cm coil LP11 loss ~50dB/m 1e-1 1e-2 1e-3 1e-4 1e-5 5cm coil LP01~0.01dB/m loss Bend Radius (m	Dre, 0.06NA	Large, Low NA Cores LMA fibers, while few	offer large mode areas v moded, can be used

Beam Control / manipulation by fibers or pigtailed components

cw/cw-modulated / qcw /pulse shape /pulsed SM

rofin

Fibers or pigtailed optical components with low losses and high damage threshold?

Advantages:

No free optics/adjustment/contamination

Examples for existing fibers with beam shaping capabilities:

- -GRIN (Refractive index)
- -Square Shape (cross section)
- -structured fiber

Processing head

-focussing optics/autofocus

-spatial beam distribution (time share(scan)/ energy share (DOE))

Process measurements(on/offline)(backreflection(absorption/depth etc/ Temperature/imaging)

-Workpiece surface measurements (autofocus/ Structure/roughness etc) Low power Medical Laser system with fiber probes or laser endoscopes already all in fiber systems

rotin

Sensor data acquisition & processing

Intelligent plug or fiberoptic signal capture and separation and processing in module

rofin

Or intelligent integration Example: all in fiber OCT in combination with fs laser for cornea treatment

QD fiber – Sensor principle

Photodiodes

2014-05-20 | MAGNUS PÅLSSON – SALES & MARKETING MANAGER OPTOSKAND

Sensor data acquisition & processing

Intelligent plug or fiberoptic signal capture and separation and processing in module

Or intelligent integration Example: all in fiber OCT in combination with fs laser for cornea treatment

(12)	Patent Application Publicat	ion (10) Pub. No.: US 2008/0058780 A1 (43) Pub. Date: Mar. 6, 2008	
(54)	LASER SYSTEM FOR REFRACTIVE SURGERY	(30) Foreign Application Priority Data	
(75)	Inventor: Klaus Vogler, Eckental (DE)	Aug. 7, 2006 (EP) 06 016 465.4 Publication Classification	
	Correspondence Address:	Tubleation Classification	
	J. Andrew Lowes	(51) Int. Cl.	
	Attorney for Applicants	A61F 9/008 (2006.01)	
	Haynes and Boone, LLP	(52) U.S. Cl	
	901 Main Street, Suite 3100	(57) ABSTRACT	
	Dallas, TX 75202-3789 (US)	A laser system for refractive surgery comprises a laser beam	
(73)	Assignee: WaveLight AG, Erlangen (DE)	for generating laser beam pulses and optical means for directing these laser beam pulses as a working beam onto an	
(21)	Appl. No.: 11/835,283	eye. Some of the working radiation is extracted for optical coherence tomography, in order to measure geometrical	
(22)	Filed: Aug. 7, 2007	structures in the cornea.	

Summary

All in fiber systems for medical applications (low power) already available

All in fiber systems for (high power) material processing need improvement on component level to

rofin

-Manage thermal and nonlinear effects of the components

-Manage interaction of components

-integrate new multiplexing methods (see IT fiber technology)

-splice and play on proper fiber package (customized application system)

Vielen Dank für Ihre Aufmerksamkeit Thank vou for vour attention

ROFIN-LASAG AG C.F.L. Lohnerstrasse 24 3645 Gwatt (Thun) Switzerland lasers@lasag.ch www.lasag.com

rofin

Optoskand fundamental fiber technology

- **Mode stripper** Surface treatment that remove all cladding modes.
- **Quartz block** Bonded fused silica end cap. Decrease surface power density.
- **AR-coating** Remove Fresnel losses.

OPTOSKAND

Polarization Maintaining Fibers

- PM-RGB Fibers (400 850 nm)
 - Ge Doped and Pure Silica Core
 - Hytrel and Nylon Buffers
- PM Telcom Fibers (980 1550 nm)
 - Gratings, Couplers, Fiber Pigtails
 - 250 or 400 μm Acrylate Coating

Temperature Cycling Results

QD fiber – Sensor communication

- Integrated sensor board for each QD connector.
- Switch off the fiber interlock in case of reaching the threashold level.

OPTOSKAND

Photosensitive Fibers

- Photosensitive Glass
 Ge/B or Ge/F co-doped
- CMS or CMO designs
- FBGs for kW Class Lasers

