Passively aligned fiber-coupling of planar integrated waveguides

Johannes Kremmel

SPPL-Event: Miniaturized Photonic Packaging – Alpnach
Acknowledgement

- Research in cooperation with vario-optics ag, Heiden AR

- Funded by KTI – PFEN-NM 16259.2

- Research published:
Motivation

- Fiber coupling of integrated optical systems is important:
 - Communication over long distances
 - Coupling to sources
 - Interlinking of PLCs (Planar Lightwave Circuits)

- Properties
 - High integration density of PLCs → Fiber-Arrays
 - Facet-coupling of dielectric waveguides with low index-contrast is most efficient (in terms of IL, space consumption etc.)
 - Small surface area on the facets of the fibers and waveguide-boards limits the durability of a facet joint
State of the Art

- Active alignment of fiber-arrays and adhesive bonding
 - Apply glass-blocks to enlarge the bonding surface
 - Polishing the facet
 - Active alignment & bonding using and UV-curing adhesive
- Automation difficult & device specific (high volume)
 → Fiber-coupling is a significant cost contributor
Approach

- **Goal:** passively aligned multi-channel fiber coupling of PLCs
- **Silicon-element with V-Grooves**
 - V-Grooves as Fiber-Holder
 - V-Grooves as alignment feature
- **Coupling interface on PLC board**
 - Structured cladding
 - Core structures as alignment feature

Source: Kremmel et al., Opt. Eng. 56 (2) 2017
Coupling characteristics

- Lateral and angular displacement – coupling efficiency
 - Waveguide: 5µm x 5µm, Δn = 0.006

![Coupling Losses, lateral displacement](image1)

- Accuracy, accepting a displacement loss of 0.5dB:
 - Lateral: <1.5µm
 - Axial: <50µm
 - Angular: <1.2°
 - Losses by Mode-Mismatch: 0.18dB

![Coupling Losses, angular displacement](image2)
Silicon-Element

- Precise Etching of V-Grooves in Silicon using KOH
 - Slow etching \{111\}-Planes for high accuracy
 - 8 Grooves for fibers
 - 3 Grooves as alignment feature
 - Large bonding area: minimal angular deviation, adhesion

- Assembly
 - Adhesive bonding of the fibers
 - cut and polish the fibers using a wafer dicer
 → all facets in one plane, <30nm RMS
Coupling Interface PLC

- Waveguides with structured top-cladding
 - Structuring by using UV-LDI
- Alignment structures corresponding to alignment V-Grooves
 - Alignment features and waveguide-cores in the same process step
 - Maximum position accuracy

→ Assembly using UV-curing adhesive
Assembly I

- Application of the silicon fiber-ribbon onto the PLC-Board
 - Alignment structures fit to V-Grooves and provide precise lateral alignment
 - Axial alignment: facets act as stop

- Mounting using UV-curing adhesive
 - Adhesive as index-matching agent
Assembly II

- Microscopy analysis of the Assembly
 - Cross-sections to investigate alignment
Optical Characterization

- Measurement of the Coupling Loss
 - Compare passively coupled WGs and reference WGs

- Reference Measurement:
 - Measure light transmitted through WG

- Measurement passive coupling:
 - Measure light transmitted through WG & coupled into SM-Fiber
Results

\[T_{\text{Ref}} = -1.69 \, \text{dB} \]

\[T_{\text{Ribbon}} = -1.92 \, \text{dB} \]

\[\rightarrow \text{Losses by SM-Coupling (CL)}: \quad 0.23 \, \text{dB} \]

\[\text{Losses due to Misalignment}: \quad 0.05 \, \text{dB} \]

\[\rightarrow \text{CL – Transition Loss}: 0.23\, \text{dB} - 0.18\, \text{dB} \]

\[\text{Scattering Losses}: \quad 0.22 \, \text{dB} \]

\[\rightarrow \text{Cut-Back Measurement} \]

\[\rightarrow \text{Total Coupling Losses/Interface}: (0.45 +/- 0.20) \, \text{dB} \]

\[\rightarrow \text{Transition Loss + Misalignment + Scattering} \]
Results II

- Climate Tests:
 - Thermal Cycling: -30 – 70°C, 10 times
 → Transmission remains unchanged on all channels

 - 85/85-Test for 168h:
 → Losses increase by 1.2dB in average
 → Reference Waveguides stable
 → SEM-Analysis of Cross-Sections: delamination of the adhesive in the gap between fiber and waveguide
Conclusions

- Passively aligned coupling of 8 SM-fibers to 8 SM-WGs has been demonstrated successfully
 - Achieved coupling losses are significantly lower than earlier reports
 - Simple assembly: no additional tools necessary (even by hand)
 - For climate tests → further optimization of assembly process

- Only standard MEMS resp. MOEMS fabrication and packaging processes have been applied
 - Si-etching in KOH
 - Adhesive bonding
 - Wafer dicing