Intelligent efficient solid-state lighting 12.12.2016, Pantheon, Muttenz BL, Swiss

Sensors for intelligent light management

Fraunhofer Institute for Integrated Circuits IIS Am Wolfsmantel 33, 91058 Erlangen, Germany

Dr. Stephan Junger

stephan.junger@iis.fraunhofer.de

1. Introduction: Fraunhofer-Gesellschaft

The Fraunhofer-Gesellschaft undertakes applied research of direct utility to private and public enterprise and of wide benefit to society.

1. Introduction: Fraunhofer IIS Fraunhofer-Institute for Integrated Circuits IIS

- Founded in 1985
- More than 950 staff
- Budget approx. € 130 million
- Revenue sources
 > 75 % income from projects
 < 25 % public funding
- Range of Services
 - Feasibility studies
 - Contract research (R & D services)
 - Licensing of technologies (e. g. mp3)

1. Introduction

Why color sensors for smart lighting?

- Mixing« of light required for color tuning (»tuneable white«)
- High-quality lighting requires precise color matching over time and from luminaire to luminaire
- Wavelength of LEDs changes with temperature and due to aging
- $\blacksquare \Rightarrow$ How to keep the color of a luminaire constant?

1. Introduction

Why color sensors for smart lighting?

Color-sensing feedback is more reliable than binning and modeling temperature and aging effects of LEDs

Cost-effective color sensors are needed for high-volume illumination applications

1. Introduction

Technologies for color sensors

- Various filter technologies are well established:
 - Absorption filters, e. g. red, green, blue pigmentfilters (Bayer filter)
 - Dielectric filters (thin film filters, interference filters)
 - In spectrometers: prisms, gratings, tunable filters
- Are there other approaches ...
 - Image: feasible using CMOS semiconductor technolgy?
 - In enabling highly integrated sensors at low cost?

2. Methodology **Nanostructures in nature**

2. Methodology

2. Methodology Nanostructures as spectral filters

Conventional CMOS photodiode

Photodiode with added metal layers as on-chip optical filters

3. EU-funded project »LASSIE-FP7« Large Area Solid State Intelligent Efficient luminaires

CSem

GAIKER

The Chemical Company

3. »LASSIE-FP7«

CMOS nanostructures as color filter

- Hole arrays with a typical period of 200 400 nm and »enhanced transmission« due to plasmon resonances are used
- Filter wavelength is tailored by varying the geometry

3. »LASSIE-FP7« Simulation of metallic nanostructures

Simulation: green filter (band pass)

Spectral transmission of a hole array (period 280 nm)

3. »LASSIE-FP7«

Fabrication of CMOS color sensors

LEOUUDAA

Sensor chip wire bonded on test board

Sub-wavelength hole arrays act as plasmonic filters

3. »LASSIE-FP7« Packaged CMOS multispectral sensor

- Photodiode array
- 12 spectral channels (400-700 nm)
- Amplifiers integrated on-chip
- Switchable gain, high dynamic range
- Configuration and data acquisition using microcontroller
- Small package (5x 5 mm²)
- Low cost at high volume

3. »LASSIE-FP7«

Spectral response of sensor channels (selection)

3. »LASSIE-FP7« Color tuning example

- Colour conversion film for 4000 K
- Red + green + blue LED for colour tuning
- Achievable tuning range depends on color conversion film and LEDs chosen

3. »LASSIE-FP7« Color feedback loop

- Feedback control algorithm tunes from actual to nominal colour point iteratively
- Color (chromaticity coordinate) is kept constant at target value
- Temperature and aging effects of color conversion film and LEDs are compensated over the lifetime of the luminaire

4. Multispectral sensors Other applications

Multispectral ambient light sensor for smart lighting

more spectral information than intensity or RGB sensors

detection of ambient light, adjusting LED lighting

- Color sensors for high temperature or humidity conditions,
 e. g. for automotive and industrial applications
- Miniaturized multispectral sensors for analytics of gases and fluids, e. g. point-of-care applications
- Application specific multispectral sensors with tailored spectral filters and signal processing on-chip

5. Conclusions

- High-quality LED lighting systems benefit from color feedback sensors
- Photodiodes with on-chip color and multispectral filters can be fabricated in high volume at low cost using a CMOS process
- Implementation of color feedback loop in order to stabilize the chromaticity point of LED luminaires demonstrated in »LASSIE-FP7«

