

Welding Cutting Drilling

Wednesday, 18 June 2014

Smart Fiber Lasers for Micro Machining Applications

Dr Mark Richmond

Product Manager

GSI Group

- Product Ranges include:
- Laser sources
- Scanning and beam delivery products
- Medical visualization and informatics solutions
- Precision motion control products

- Leading provider of precision laser, medical and motion control technology
- Canadian Company founded in 1968, with U.S. Headquarters in Massachusetts
- ~\$365M in annual revenue and ~\$60M in annual Adjusted EBITDA*
- Approximately 1,400 employees for continuing operations
- Trade on NASDAQ (GSIG)

GSI Global Footprint

Welding Cutting Drilling

JK[™] Lasers

JK Lasers JK Lasers: Key Facts

- Founded in 1972
- Previously best known as 'Lumonics'
- Based in Rugby, UK and Suzhou, China
- Global installed base of 1000's of industrial lasers.
- Industrial Fiber Lasers complement lamp pumped Nd:YAG based lasers for Welding, Cutting and Drilling.
 - JK Lasers is able to offer the right laser for each Application.

Welding Cutting Drilling

Company HQ: Rugby, UK

Company Facility: Suzhou, PRC

Tradition as leader in Industrial Lasers

JK[™] Lasers

fiber laser. The JK1000FL delivers new levels of power and control The high powered 2kW fiber laser (JK2000FL) is introduced

JK Lasers launches Its first multi-kiloWatt

Pump

 JK Fiber Lasers use their own patented technologies and knowhow to give unique user advantages.

Beam Delivery/HP Combiner

US2010/0124393 – US pending (near granted) EP8750781 – EU pending 2010-511726 – JP pending WO2011/048398 – Application in progress

Welding Cutting Drilling

Fiber Architecture US7649914 – US granted 200680037877.1 – CN granted EP06794985.9 – EU pending US 2009/0251770 – US pending EP7824915.8 – EU pending

Fiber Laser System US7839902 - Granted EP06795014.7 – EU pending

Combiners EP2033277 – EU granted US7720340 – Granted 200780029869.7 – CN pending 2009-517441 – JP pending **Applications/Process**

US2009/0296748– US pending EP09718580.5 – Application in progress PCT/GB2011/051359 – Application.

The 'Smart Laser™' Concept

- JK Lasers have over 40 years experience of designing, manufacturing and processing with our own industrial lasers.
 - This experience has already been 'designed in' to our range of Fiber Lasers.
- JK Lasers now present the 'Smart LaserTM' Concept
 - Of course beam quality, reliability etc. are highly important
 - But these are now 'givens' for industrial fiber lasers.
 - Next generation lasers will have features that ensure higher throughput, better process control and save money by eliminating the need for additional external controls and equipment.
 - > Now that is a 'Smart LaserTM'.

'Smart LaserTM' features

- JK Lasers is showcasing a number of our key differentiators and 'Smart Laser[™]' features.
- This presentation covers:
 - Back Reflection Protection
 - Focus Position optimisation
 - In Process Monitoring

Back-Reflection Protection

- What is Back-Reflection?
 - Laser light reflected back from the work-piece
 - Can occur when processing reflective materials like Al, Cu, Au, Ag
 - Can occur when 'coupling in' to less reflective materials or being out of focus
- Why is avoiding back-reflection important?
 - At best it will affect the effectiveness of the laser process
 - > At worst it can damage an unprotected laser source or delivery fibre
- Generally how is it protected against?
 - By not processing reflective materials!
 - By using non-optimal process head alignments
 - By using additional components to protect the laser source
- Many new laser users don't appreciate the problems that back reflections can pose - until they hit the problem!

Back-Reflection

Welding Cutting Drilling

Protecting Against Back-Reflection

- Faraday isolator
 - Degrades beam quality & power
 - Adds significant extra cost.
 - Bulky, especially for higher powers
- Process at an angle
 - Elliptical spot
 - Material cut becomes thicker
 - Uneven kerf width & cut profile
- JK Lasers' Smart solution
 - LuminatorTM fiber

Features of Luminator[™] Fibres

Welding Cutting Drilling

Back Reflected light is rejected out of the side of the connector.

JK Lasers Additional FL Protection Welding Cutting Drilling

 Protection against Back-Reflected light is also designed into laser control system

- Back-reflection levels constantly monitored
- Laser protects itself if excessive levels detected
- Very fast embedded control system response time (ns)
- Back-reflection levels may be viewed in FiberViewTM GUI
- Short and long response times monitored.

Harnessing Back Reflection

- Welding Cutting Drilling
- Back-reflection can actually be a useful thing
 - if we can harness the signal.
- The measured back-reflection levels are available for:
 - Automatic focus finding
 - No additional external control system components needed
 - Saves system cost, improves repeatability and throughput
 - Automatic material pierce detection
 - No additional external components needed
 - Saves system cost, improves throughput
 - Process status monitoring

Pierce Detection

Focus Finding

Signal Access Points

Welding Cutting Drilling

Having Fiber Laser and Beam Delivery system from a single supplier allows for an integrated approach

using multiple access points to Back Reflected signal.

Focus optimisation using BR signal

- A null is formed around the focus point
 - around the size of the depth of field of the beam
- Different spot sizes have been tried, all give similar curves
- Finding the vertex of the parabola gives greater accuracy,
- 100µm displacement measured
- Possibility of use on welding and galvanometer based scanning systems

Focus Optimisation

Copper (purple curve) & SS (pink curve) Compared

Welding Cutting Drilling

(10) International Publication Number WO 2012/022951 A1

JK[®] Lasers In Process Monitoring

Patent Protection

Patent number	Title	International Publication date	Priority date	Expiry date
US5319195	Laser system method and apparatus for performing a material processing operation and for indicating the state of the operation	NA	2/4/1992	2/4/2012
US5850068	Focus Control of Lasers in Material Processing operations	NA	3/6/1997	3/6/2017
US6347178	Optical Fibre apparatus	NA	1/11/1999	1/11/2019
US8213753	System for delivering the output from an optical fibre	20 th May 2010	29/5/2008	8/12/2029
EP2265407 (W02009/112815)	Process Monitoring	17 th September 2009	13/3/2008	13/3/2028
W02012/022951	Method of optimising the focus of a fibre laser	23/2/2012	10 th August 2010	NA

Conclusions

Welding Cutting Drilling

- Fiber lasers are generally very similar in terms of being a source of light for materials processing.
- What can differentiate these laser sources is their level of sophistication in terms of "Smart Laser" features
 - Ease of integration
 - User friendliness

- Remote diagnostics
- Process improvements
- Back-reflection can be a big problem
 - Protecting against it can be expensive and uses bulky components
 - ► JK Lasers LuminatorTM fibers and smart laser control system are a low cost in-built solution that completely protects against back-reflection.
- Back-reflection can be useful
 - It can be used to monitor the laser process, detect breakthrough and find laser focus.

