Willkommen Welcome Bienvenue

Materials Science & Technology

Mask projection surface structuring

Patrik Hoffmann Advanced Materials Processing Empa Thun, Switzerland

EPHJ - Geneva, 18.6.2014

Outline

- Ablation process limitations
- Excimer lasers
- Installation in Thun
- Examples

ns-Machining vs. fs-Machining

01999 Clark-MXR, Inc.

Different exposure of light

LASER BEAM

Mask projection system

Materials Science & Technology

Focus control - resolution and N.A.

Materials Science & Technology

Materials Science & Technology

What happens at Empa Thun ?

Full process

From requirements to origination to mass production

Crealas and its partners can offer you all the steps from design up to roll to roll production.

XL Micromachining System

Materials Science & Technology

Travel	400 mm
Accuracy	±0.50 μm
Repeatability	±0.20 μm
Straightness	±0.40µm
Flatness	±0.40µm

XXL microprocessing machine

Materials Science & Technology

Specification	Unit	X-axis	Y-axis
		Spec	Spec
Travel	Mm	> 2200	> 1450
Payload	Kg	~ 115	~ 280
Speed	mm/s	200	360
Acceleration 1	m/s ²	0,75	1
Resolution	μm	0,04	0,04
Bi-directional repeatability	μm	±2	±2
Accuracy (before calibration) 2	μm	±4,5	±3
Straightness, bi-directional	μm	±2	±1,5
Flatness, bi-directional	μm	±5	±5
Roll, bi-directional	Arcs	2	1
Pitch, bi-directional	Arcs	2	1
Yaw, bi-directional	Arcs	2	2
Orthogonality (after calibration)	Arcs	2	

Some highlights

- 3 m² exposure area
- Ultra high precision: x/y axis < 40 nm resolution (laser interferometer based encoders)
- Repeatability 3 um over full travel (+/- 1.5 ppm)

Projection ablation options for complex surface shapes

Synchronized Image Scanning (SIS)

Materials Science & Technology

2. Array of contours to be placed on mask

Intensity modulation of the imaged pattern

Materials Science & Technology

 Transmission varied by changing hole size or density

8-level Diffractive Optical Element Material: Polycarbonate; Laser: KrF excimer 248nm; Optics: x5, 0.13NA;

Materials Science & Technology

What can be & has been done with our systems?

Wide range of materials can be ablated

Materials Science & Technology

- Polymers
- Metals
- Glasses
- Silicon
- Optical materials
- Composites
- Ceramics
- Thin films

Laser machining of ceramics

Materials Science & Technology

400 um

Microstructures in "green" ceramics

Materials Science & Technology

- 1/50 of energy density needed to machine
- Potential for highly efficient micro structuring of ceramics

Courtesy of EPFL

Laser machining of polymers

Materials Science & Technology

- Low ablation threshold (< 100 mJ/cm²)
- Low surface roughness
- High edge definition

Mask imaging from submicron to millimetre feature

Feature quality: fit of target shape

Materials Science & Technology

The average deviation from the best fit ROC is 147 nm with a ROC of 59.2 μ m while the target is 60 μ m.

Examples

Highly engineered Micro-Structures

- Individual feature size x/y: 2 μm 1000 μm
- Feature height or depth z: 0 250 μm
- Wall angles and slopes α: 0° 85°

Large surface replication

Laser cut Microlens array DHM measured \otimes = 70 µm, *h* = 25 µm

LAMP - Team: Dr Karl Böhlen, Mr Erdem Siringil, Dr Kilian Wasmer

Gradients of structures

Bio-platform of advanced micro-topographical surface

Laser Center Thun Exitech PPM601E capability of micro-structuring very large areas up to 1900 x 1450mm².

Existing Structures taken from Materiomics => 2.5D, http://www.utwente.nl/tnw/tr/people/ principleinvestigators/jandeboer/res earch

LAMP - Team: Dr Karl Böhlen, Mr Erdem Siringil, Dr Valentina Dinca, Dr Kilian Wasmer

Diffractive Optical Elements

Characterization of phase elements

3 D TV: Large area precision masters

Applications

Keyboard illumination:

OLED out-coupling:

Plain OLED without any out-coupling films

Applications

Advanced surfaces

- Biomimic surfaces (Lotus, Gecko, etc)
- Friction and drag reduced surfaces
- Selectively activated (e.g. hydrophilic & hydrophobic)

Applications

Advanced surfaces

- Biomimic surfaces (Lotus, Gecko, etc)
- Friction and drag reduced surfaces
- Selectively activated (hydrophilic & hydrophobic)

James F. Schumacher et. al, Langmuir 2008, 24, 4931-4937

Kenneth K. Chung et. al, Biointerphases, 2007, 2, 89-94

Conclusions

- Large surface laser processing possible
- Master pieces replication

