

Requirements on delivery fibers in manufacturing processes EWAG AG, 09.12.2015

Contents

Introduction

EWAG AG as a member of the Körber- and the United Grinding group

EWAG LASER LINE series

- Typical processing materials, applications & research partners
- Machine designs, laser & optical requirements

Beam path / delivery fibers

- Properties & requirements
- Free-space vs. fiber delivery
- Current market situation industrial lasers & fiber laser development
- Ultrashort pulse fiber lasers many beam guiding concepts

Conclusions

3

The structure of the Körber group

Our brands

Technology group tool

WALTER / EWAG – complete solution partner for tools

Contents

Introduction

EWAG AG as a member of the Körber- and the United Grinding group

EWAG LASER LINE series

- Typical processing materials, applications & research partners
- Machine designs, laser & optical requirements

Beam path / delivery fibers

- Properties & requirements
- Free-space vs. fiber delivery
- Current market situation industrial lasers & fiber laser development
- Ultrashort pulse fiber lasers many beam guiding concepts

Conclusions

Materials & applications

Typical processing materials

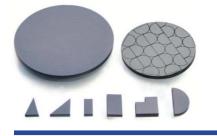
Ultrahard materials

- Polycrystalline diamond (PCD)
- Chemical vapor deposition diamond (CVD-D)
- Cubic boron nitride (cBN)
- Monocrystalline diamond (MCD)

Application

- Plate based(e.g. milling or drilling tools)
- Grain based (e.g. dressing wheels)
- Combinations (e.g. full PCD on carbide base)

Metals

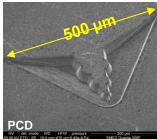

- Tungsten carbide
- Iron / iron cast
- Steel

Application

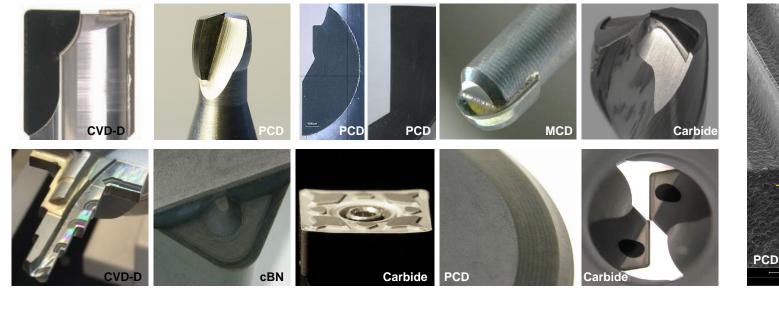

- Tool body
- Substrate material for plating
- General machining parts

Ceramics / others

- Individual material mostly unkown
- Parameter range needs to be found on every trial
- Application
 - Tooling industry
 - IT industry



Creating Tool Performance



Typical applications & research partners

Research

Standard

Kommission für Technologie und Innovation KTI

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

200 µm

EMEZ Quanta 200

5 um

Sources: G. Eberle, C. Dold, K. Wegener (2015) Picosecond laser fabrication of micro cutting tool geometries on polycrystalline diamond composites usinng a high-numerical aperture micro scanning system. Lase – Spie Photonics West, USA, 935103/1-9.

Creating Tool Performance

EWAG LASER LINE series Machine requirements for micrometer precision Accuracy **Tool dimensions** d < 200 mm. l < 250 mm Typical tolerances (e.g. automotive industry) Profile form (entire tool) < 3 µm Diameter < 2 µm Runout < 2 µm **Operating environment** Climate control highly recommended a. Ra Q Machine base

- Massive vibration damping required
- -> Machine design & environmental issues critical
- -> Fiber lasers & fiber delivery systems help reduce complexity & enable high accuracy

EWAG LASER LINE series

Current machining centers

- 5 CNC- + 3 optical axes
- Free-space laser system & beam delivery
- t_P = 10 ps, P = 50/100 W, f_P < 2 MHz
- Water cooling (+- 0.1 K)
- On-site servicing challenging
- High laser system costs

- 5 CNC- + 2 optical axes
- Fiber laser system & fiber beam delivery
- t_P = 1.5 ns, P = 20 W, f_P < 0.6 MHz
- Air cooling
- Laser system easily exchangable
- Low laser system costs

Contents

Introduction

EWAG AG as a member of the Körber- and the United Grinding group

EWAG LASER LINE series

- Typical processing materials, applications & research partners
- Machine designs, laser & optical requirements

Beam path / delivery fibers

- Properties & requirements
- Free-space vs. fiber delivery
- Current market situation industrial lasers & fiber laser development
- Ultrashort pulse fiber lasers many beam guiding concepts

Conclusions

Fiber laser systems & fiber based delivery

Properties & requirements

- Free space systems
- Fiber based systems

- Bulky
- Complex
- Expensive

- Compact
- Reliable
- Reduced maintenance

Transport challenging (e.g. free-space system)

- Laser mounted into machine bed /no vibration isolation possible
 - Laser system
 - Beam path
 - All optical components
- Machine weight approx. 4.5 t
- Machine transported via ship / airplane
 - Shock events up to 10g

-> Beam path flexible -> shock protection possible

-> Fiber beam path is ideal

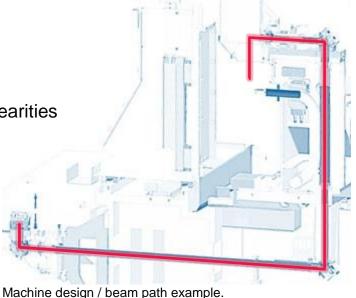
Example of an ultrashort pulse free-space system.

Delivery of a machine with installed ultrashort pulsed laser system. Shock events up to 10g when handling system.

Laser system integration (machine & application)

Beam path challenges & parameter ranges of interest

Beam delivery challenges


- Short & ultrashort pulses for efficient high quality ablation (ns -> fs)
- Laser beam alignment through machine
 - Short, stiff beam paths
 - Vibration isolation, esp. optical elements

Fiber delivery systems

- Ideal deployment system
- Higher pulse energies must be handled / reduction of nonlinearities

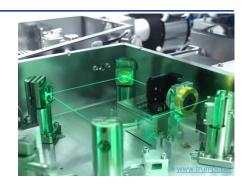
Processing parameter ranges & requirements

- Large pulse energy range (µJ-mJ)
- Large repetition rate range (kHz MHz)
- Fast beam deflection systems (1 100 m/s)
- Synchronized CNC- / optical axes motion

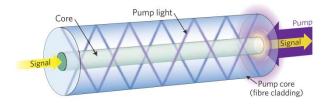
Laser system & delivery system analysis

Fiber vs. free-space system comparison

Laser system design is not the primary objective


- Free-space or fiber laser not primarily important
- Machine design for ideal laser operating conditions
- Vibration damping (laser) & cooling (water / air / climate control,etc)

Beam delivery systems can provide flexibility

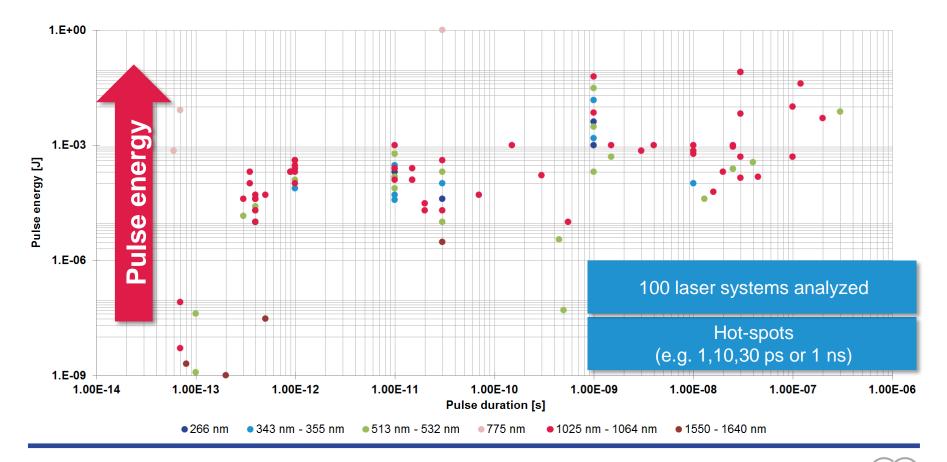

- Free-space beam delivery highly challenging
 - Micrometer precision of entire beam path
 - 8 axes kinematics -> tolerances / vibrations
- Fiber based beam delivery
 - Fiber integration simple & accurate, lengths < 5 m ideal

TEM₀₀

- Laser pulse shape / wave properties
 - Spatial
 - .
 - Temporal ±10% acceptable but constant
 - Spectral
- ± 10 nm linewidth acceptable but constant in time
- -> constant ablation behavior is key

Source (2nd from bottom): C. Jauregui, J. Limpert, A. Tünnermann (2013) High-power fibre lasers. Nature Photonics, 7:861-867.

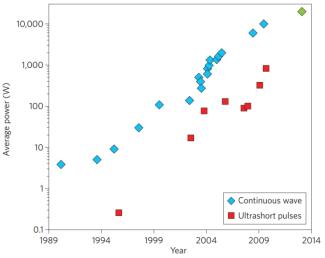
15

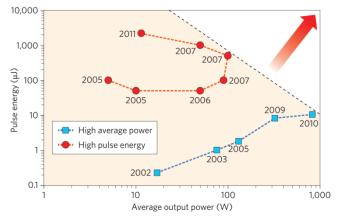

KORBE

	nachine & ents for indu	-			
Laser system	Beam path	Processing head	Machine kinematics	Beam control / calibration	Workpiece
 Pulse duration 	Free-space	 Deflection system 	CNC-axes	 Focal plane 	 Geometrical accuracy
 Pulse energy 	 Fiber-based 	Dynamic	 Optical axes 	 Axes calibration 	Surface
Repetition rate	Optical elements	properties	Motion control	Fiber failure	roughness
WavelengthSize & weight	Flexibility	Overall stability	High precision	detection Pulse duration? 	 Efficiency
				 Pointing stability? 	
Vibration isolation		Water cooling		Tool clamping	
Climate control		Vibration damping by machine bed only			Automation
Separate housing		Stiff construction			

Industrial laser sources

Current market situation (short & ultrashort pulses)




Recent developments

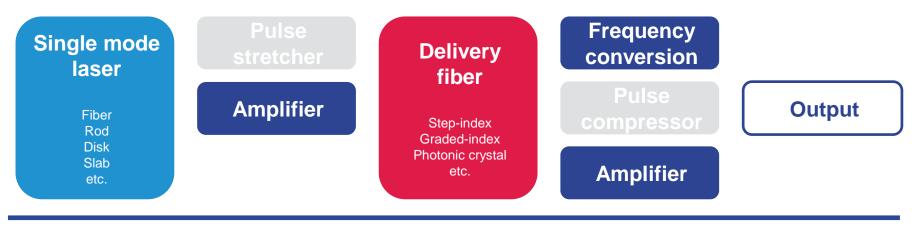
Average power & pulse energy scaling

- Fiber laser research
 - Average output power of fiber laser systems strongly developed in the past 25 years
 - Ultrashort pulsed lasers have been developed in terms of high average power or high pulse energies
 - Further increases towards high average power and high pulse energies are yet under development due to mode instability problems
 - New fiber design layouts are under heavy development from research groups worldwide
- \Rightarrow Even higher average power and pulse energies soon to be expected.

Average output power of nearly diffraction limited fibre lasers.

Evolution of pulse energy vs. average output power of single-emitter fs fiber lasers.

Source: C. Jauregui, J. Limpert, A. Tünnermann (2013) High-power fibre lasers. Nature Photonics, 7:861-867.


Fiber delivery concepts for fiber lasers

Laser system & delivery fiber architecture

Many system ideas are on the market

- Laser & beam delivery as modular system in order to
 - Reduce nonlinearities / achieve higher pulse energies / average powers
 - Placing some components at unusual locations
 - Use amplifier fiber as delivery fiber?
 - Add pulse compression at end of fiber?

-> What is the ideal system design for which task?

Contents

Introduction

EWAG AG as a member of the Körber- and the United Grinding group

EWAG LASER LINE series

- Typical processing materials, applications & research partners
- Machine designs, laser & optical requirements

Beam path / delivery fibers

- Properties & requirements
- Free-space vs. fiber delivery
- Current market situation industrial lasers & fiber laser development
- Ultrashort pulse fiber lasers many beam guiding concepts

Conclusions

Conclusions

Beam delivery challenges

- Short & ultrashort pulses essential for highest ablation quality & process efficiency
- Increased repetition rates & increased pulse energies beneficial for thick materials
- Laser beam alignment must be accurate on micrometer level in harsh environments (temperature, humidity, vibration/shock events)
- Fiber delivery for short & ultrashort pulses currently not sufficient on an industrial scale for high pulse energies and high average powers -> laser system design incl. Beam transport to workpiece location

Laser system challenges

- Industrial use involves transport (up to 10g), easy installation and 24/7 operation in rough conditions in terms of vibrations / shocks, temperature, humidity
- Good servicability of all system components
- ⇒ Modular concept of laser, delivery fiber, frequency conversion and pulse compressor could prove to be highly beneficial for future system designs

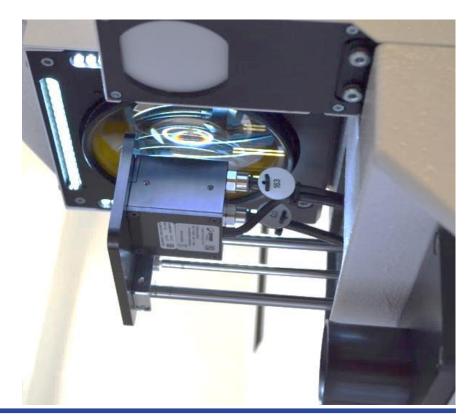
Thank you.

EVAG KÖRBER SOLUTIONS

Dr. Claus Dold Head of process technology / PM Laser

Ewag AG Industriestrasse 4 CH-4554 Etziken <u>Claus.Dold@ewag.com</u> <u>www.ewag.com</u>

EWAG LASER LINE series

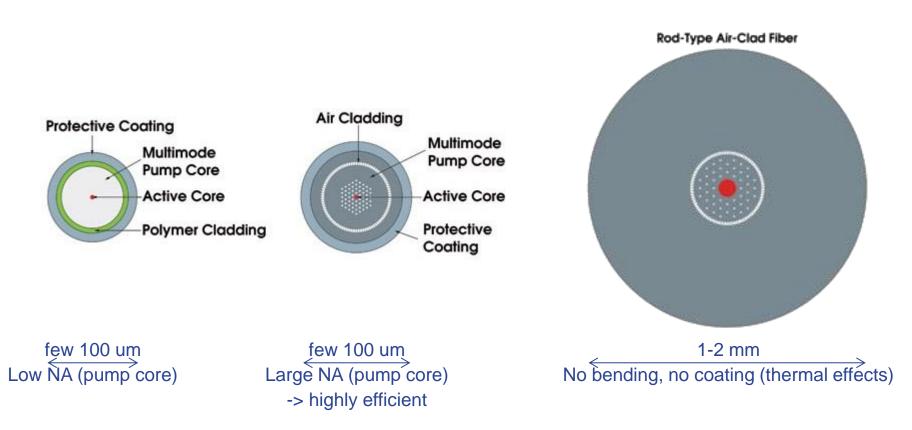

Beam path

Current automatic calibration routines

- Power monitoring at the workpiece
- Focal plane location adjustment
- Kinematic CNC-/optical beam path alignment

Delivery fiber monitoring

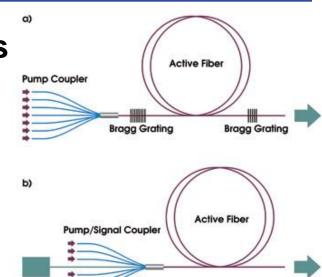
- Fiber damage
- Future fiber monitoring aspects?
 - Pulse dispersion / distortion?
 - Fiber temperature?



Fiber designs

Examples

Source: K. P. Hansen, J. Broeng (2006) High-power fibre lasers. Photoncis Spectra.


Fiber delivery concepts for fiber lasers

Laser system & delivery fiber architecture

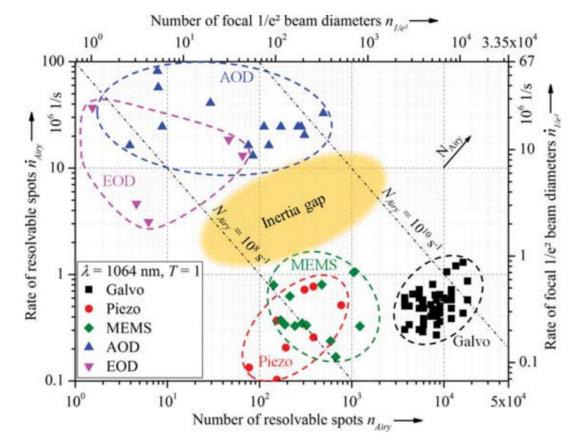
Many system ideas are on the market

- Laser & beam delivery as modular system in order to
 - Reduce nonlinearities
 - Achieve higher pulse energies / average powers
 - Placing some components at unusual locations
 - Use amplifier fiber as delivery fiber?
 - Add pulse compression at end of fiber?

-> What is the ideal system design for which task?

Fig. 1: Typical fiber laser designs (a) simple oscillator with Bragg reflectors. (b) Master oscillator power amplifier (MOPA) design.

Master


Oscillator

Deflection unit comparison

Different system designs

Source (top): P. Bechtold, R. Hohenstein, R. Schmidt (2014) Evaluation of disparate laser beam deflection technologies by means of number and rate of resolvable spots. Optics Letters, 38:2934-2937.

