Photonics 4 Precision Manufacturing

Industrial Micro-materials Processing Applications with Fiber Lasers

Wednesday, 15.06.2016, Palexpo Genève

The Power to Transform®

Tim Westphäling

IPG Laser, Burbach Germany

Copyright IPG Photonics
IPG Overview

Single Mode

QCW

Short pulse Laser

Outlook & Conclusion
General data IPG Photonics

- 3800 employee world wide
- Development and Production of Fiber Laser
- Service and Sales Department
- Application lab

Vertically Integrated Production

- Final Assembly
- Modules
- Process Heads
- Active Fiber Block
- Beam Switches
- Collimators
- Fiber Beam Delivery
- Optical Components
- Fiber Draw
- Optical Preform
- Fab Operation
- Diode Assembly
General data IPG Photonics

- Founded in 1991
- 17% year-over-year increase
- 800 employees more in 2015
- Total net sales 901 million $

2015 Sales by Geography and End-Use

- Asia (54%)
- Europe, CIS (31%)
- Americas (15%)
- Materials Processing (94%)

High Power Laser Sales
(in millions)

- 2011: $222.1
- 2012: $263.4
- 2013: $344.1
- 2014: $426.1
- 2015: $499.6

Source: IPG Photonics Annual Report 2015
Application Field of Fiber Laser

Overview

- Photovoltaics
- Advanced and Scientific
- Medical Procedures
- Power Plant
- Medical Device
- Rapid Manufacturing
- Heavy Industry and Transport
- Entertainment & Projection Display
- Oil & Gas
- Consumer and Appliances
- Aerospace
- Automotive
- Semiconductor & Electronics
- Telecommunications
IPG Product line

Overview Laser

- Low Power CW Fiber Lasers
- Mid Power CW Fiber Lasers
- High Power CW Fiber Lasers
- Quasi-CW Fiber Lasers
- Nanosecond Fiber Lasers
- Pico & Femtosecond Fiber Lasers
- Mid-IR Hybrid Lasers
- CW Fiber Amplifiers
- Diode Lasers
Single Mode Laser in Micromachining

Single Mode Fiber Laser (CW)

- Precision Cutting
- Remote Applications
- Accurate Welding

High Power 1 kW – 20 kW

Mid-low Power < 1 kW
Single Mode Laser in Micromachining

Single Mode Fiber Laser(CW)

Application Example

Accurate Welding

Foil Welding

© BIAS, Deutschland
Spot welding of watch parts
Seam welding of Batteries
Fine Cutting with 100 – 300 Watt

YLR 300 SM

Cutting Speed m/min

Thickness mm

Stainless steel
f = 50 mm
Nitrogen
Single Mode Laser in Micromachining

Single Mode Fiber Laser (CW)

Application Example

Fine Cutting

Nitinol

Steel
Remote Cutting Metals
Remote Cutting Metals - Examples

Micro punching applications:
- automotive
- electronics
- medical industry
- precision mechanics
- gaskets
- etc.
Remote Cutting Speeds

![Graph showing cutting speed vs. sheet thickness for 1 kW and 3 kW singlemode fiber lasers on stainless steel (1.4301) without cutting gas.]

Source: IWS
Pulsed Fiber Laser in Micromachining

QCW Laser

- Drilling
- Cutting
- Spot Welding
- Batteries
- Seam Welding
- Medical Devices
- Micro welding
- Computer Components
- Deep Engraving

<table>
<thead>
<tr>
<th>Average Power</th>
<th>Peak Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 W</td>
<td>1500 W</td>
</tr>
<tr>
<td>300 W</td>
<td>3000 W</td>
</tr>
<tr>
<td>450 W</td>
<td>4500 W</td>
</tr>
<tr>
<td>600 W</td>
<td>6000 W</td>
</tr>
<tr>
<td>900 W</td>
<td>9000 W</td>
</tr>
<tr>
<td>1200 W</td>
<td>12000 W</td>
</tr>
<tr>
<td>1500 W</td>
<td>15000 W</td>
</tr>
<tr>
<td>1800 W</td>
<td>18000 W</td>
</tr>
<tr>
<td>2000 W</td>
<td>20000 W</td>
</tr>
<tr>
<td>2300 W</td>
<td>23000 W</td>
</tr>
</tbody>
</table>
Beamshaping Software
Pulsed Fiber Laser in Micromachining

QCW Laser

Application Example

Pulsed Welding
- Sealed welding
- Pulse shaping
- Low HAZ

Grid Welding

Membrane

Thermosta

Decorative

Application Example:
- Gold
- Brass
- Stainless Steel
- Pacemaker
- Titanium

© Medtronic, Schweiz
Spot welding of watch wheels
Seam Welding of pressure sensors (diameter 12 mm)

Laser: YLR-150-1500-QCW-AC
Material: stainless steel, 20 µm
Parameter: 50 µm fiber
200 mm/min
Pulsed Fiber Laser in Micromachining

QCW Laser

Application Example

Pulsed Cutting
• Accurate Cutting
• Pulse shaping
• Low HAZ
• Cutting of different material

© ACSYS, Germany
CW and Pulsed with One Device

YLR-150/750-QCW-AC

Cutting speed [m/min] vs. Thickness [mm]

- Stainless steel 1.4301
- Collimator: 100 mm
- Focal length: 125 mm
- Fiber: 50 µm
- Spot: 60 µm
- P_avg: 150W
- Duty cycle: 20%

- 2 mm stainless steel
- 3 mm stainless steel
- 4 mm stainless steel
Pulsed Fiber Laser in Micromachining

QCW Laser

Application Example

Deep Engraving

Drilling

Graph showing the relationship between peak power and depth for micromachining applications.

Copyright IPG Photonics
Percussion drilling

Laser: YLR-150-1500-SM-AC
Optic: 73:100 mm
Material: Stainless Steel, 4 mm
Parameter: 500 Hz, 0.3 J, 200 μs
Avr. Power: 150 W
Hole size: 250 μm entrance
200 μm exit
Drilling time: 1-10 s

Aspect ratio > 20
Pulsed Fiber Laser in Micromachining

YLP-V2/V3 series overview

- Average power: 10/20/30/50/100 W
- Pulse energy: 1 mJ
- Pulse repetition rate: 2…200 kHz
- Pulse duration: 100 ns
- Beam diameter: 7.5 mm
- Beam quality M2: <2
- Delivery fiber length: 3 m
- Operating wavelength: 1064 nm

- Bitstream 1 operating mode (instant emission ON/OFF)
- Built-in RS232C interface
- Extended PRR down to 2 kHz
- Full factory pre-calibrated
YLP-V2/V3

Application Example

Marking

Grayscale marking

Color marking

Marking of different Material
Pulsed Fiber Laser in Micromachining

YLP-V2/V3
Application Example

Drilling

Dust cleaning

© LZH, Germany

Structure

Surface finish

© LZH, Germany

Steel

Silicon

Stainless Steel

Aluminum
Pulsed Fiber Laser in Micromachining

MOPA (Master Oscillator Power Amplifier) Series Overview

<table>
<thead>
<tr>
<th>Feature</th>
<th>YLPN-1-4x200</th>
<th>YLPN-1-1x120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average power</td>
<td>10/20/30 W</td>
<td>30/50/100 W</td>
</tr>
<tr>
<td>Pulse energy</td>
<td>0.5/1 mJ</td>
<td>1 mJ</td>
</tr>
<tr>
<td>Pulse repetition rate</td>
<td>1.6...1000 kHz</td>
<td>2...12000 kHz</td>
</tr>
<tr>
<td>Pulse duration</td>
<td>4-200 ns, adjustable</td>
<td>1-120 ns, adjustable</td>
</tr>
<tr>
<td>Beam diameter</td>
<td>7.5 mm</td>
<td>7.5 mm</td>
</tr>
<tr>
<td>Beam quality M2</td>
<td><2</td>
<td><2</td>
</tr>
<tr>
<td>Delivery fiber length</td>
<td>2 m</td>
<td>2 m</td>
</tr>
<tr>
<td>Operating wavelength</td>
<td>1064 nm</td>
<td>1064 nm</td>
</tr>
</tbody>
</table>

![Image of MOPA series lasers](image-url)
Pulsed Fiber Laser in Micromachining

MOPA (Master Oscillator Power Amplifier)

Application Example

Precise Ablations

Patterning

Scale: 200um

Gold on PET

Steel
Pulsed Fiber Laser in Micromachining

MOPA (Master Oscillator Power Amplifier)

Application Example

Scribing

Silicon

Resistance trimming

Solar Industry

- Open of Passivation - Layer
- Scribing
- Drilling
Pulsed Fiber Laser in Micromachining

Pico Second Fiber Laser

- Fine Ablation
- Dark Marking
- Scribing
- Precision Hole Drilling

- Peak power up to 330 kW
- Average power 30 W
- Pulse energy up to 1 mJ
- Pulse repetition rate 2...1000 kHz
- Pulse duration 0.15...5 ns
- Beam diameter 7.5 mm
- Beam quality M2 <2
- Delivery fiber length 5 m
- Operating wavelength 1064 nm
- Size module (WxHxL) 215x95x286 mm
- Size head (WxHxL) 162x70x320 mm
Pulsed Fiber Laser in Micromachining

Pico Second Fiber Laser

Application Example

Cutting of PCD (PolyCrystalline Diamond) and Tungsten-Carbide (WC)
Pulsed Fiber Laser in Micromachining

Pico Second Fiber Laser

Application Example

Cutting of PCD (Poly Crystalline Diamond) and Tungsten-Carbide (WC)

Process Results:
- less roughness on cut edge wall (Ra = 0.2 – 0.3µm)
- less chipping (<8µm)
- no heat affected zone
- ablation rate ~ 1mm³/min
- 2 step process:
 5ns/1mJ for deep engraving
 150ps/50µJ for fine finish
Pico Second Fiber Laser

Application Example

Drilling

- Less heat input
- Constant holes in ceramic
- High aspect ratio
Pulsed Fiber Laser in Micromachining

Pico Second Fiber Laser

Application Example

Dark marking of different Material

- Copper
- Aluminum
- Steel
- Brass
- Coated Material
- Synthetic Material
- ...

Copyright IPG Photonics
Pulsed Fiber Laser in Micromachining

Pico Second Fiber Laser

Application Example

Example c-Si PV Selective Removal of Backside Passivation
 • no melting with 150ps
 • no heat affected zone

Thin Layer Technology

• Solar cells (c-si)
• Molybdenum layer
• CIGS (copper-indium-gallium-selenide)
• ITO (indium tin oxide)
• PEDOT (Poly(3,4-ethylenedioxythiophene))
• …

Example P1 on flexible substrate
Outlook & Conclusion

- IPG is market leader for fiber lasers
- Single mode lasers for fine cutting and micro welding applications
- QCW lasers to replace lamp pumped Nd:YAG lasers
- Pulsed lasers in ns range for a broad range of micromachining applications
- Sub ns fiber lasers are a cost efficient alternative for ultra short pulse lasers for many applications
Thank you for your attention!

Tim Westphäling
twestphaeling@ipgphotonics.com

IPG Laser, Burbach
Germany
www.ipgphotonics.com