Powerful, flexible, and cost-effective picosecond lasers for industrial micromachining

Dr. Kurt Weingarten kw@time-bandwidth.com

Material processing: "long" versus "short" pulses

Picosecond pulses can cut through "anything" with a very low amount of heating / residual damage

"Cold ablation" starts at around 10 ps pulsewidth

Why? Peak Power required to start ablation is reached at lower pulse energy with shorter pulses

Why picoseconds?

- Substantial process advantages compared to nanosecond pulses for micromachining
 - -smaller heat-affected zone (less than 1 micron typical)
 - -less micro-cracking
 - -less recast
 - -with substantially faster speed / productivity (depending on process)
 - -higher quality \leftrightarrow higher speed \leftrightarrow (lower cost)
- Substantial system advantages compared to femtosecond pulses
 - -system much less complex and lower costs
 - -dispersion of picosecond pulses not an issue
 - -bandwidth of femtosecond pulses can degrade scanner performance
 - -system components more proven in industrial environments
 - -power scaling currently possible for increased process speeds
 - "Most of the advantages of femtosecond lasers but much simpler / scalable"
 - -Femtosecond systems more applicable for "2-photon" processes

DUETTO[™] - Integrated Industrial MOPA product family

Master Oscillator Power Amplifier diode-pumped picosecond laser system - architecture

Seed oscillator

- based on Lynx industrial laser with >decade of proven field reliability
- 10 nJ, 10 ps, 1064 nm pulses
- High-rep pulses seed amplifier stage with user-selectable pulse rate

Duetto Integrated MOPA

DUETTO - key performance parameters

output power repetition rate pulse energy pulse width peak power wavelength M² (TEM₀₀)

up to 15 W 50 kHz – 8 MHz up to 200 µJ 10 ps up to 20 MW 1064 nm < 1.3

DUETTO family of modular customizable options

- FUEGO power booster to >50W average power
- Frequency Conversion
 - to 532 nm (green): >60% conversion efficiency
 - to 355 nm (UV): >35% conversion efficiency
 - to 266 nm or other wavelengths also available
 - fixed, manual, or auto (software) switching
- Pulse on demand POD highest speed pulse control
 - Individually triggerable pulses single-shot to 4 MHz, digital or analog gating
 - or arbitrary groups of pulses
 - prevents typical pre-pulse or first-pulse overshoot often seen in other systems
 - FlexBurst[™] technology
- Other options
 - timing synchronization to external clock with sub-picosecond accuracy
 - variable (switchable) pulsewidths
 - repetition rate at oscillator output (80 MHz typical)

Optimized parameters for targeted process

Flexibility: Wavelengths

Time-Bandwidth® 1

DUETTO – excellent long-term stability characteristics

shock and vibration testing

Time-Bandwidth®

Cold ablation – simple guidelines

Cold ablation ⇒ operate near threshold fluence ⇒ need moderate pulse energy

Chichkov, et al., Appl. Phys. A 63, 109 (1996)

 $fluence = \frac{pulse\ energy}{beam\ area}$

High quality ablation is a *gentle* process, it requires:

✓ short pulses typically < 10 ps

✓ high enough fluence typically > 1 J/cm²

✓ not too high fluence typically < 2 x threshold

X

Example :

 $F_{threshold} = 1 \text{ J/cm}^2$ $F_{operation} = 1.5 \text{ J/cm}^2$ $Area = 500 \ \mu\text{m}^2$ (~25 \ \mu\mm m spot diameter) $E = 10 \ \mu\text{J at focus}$

high quality processing Image: Constrain the second state of the second st

High power, <u>fixed</u> pulse rate laser (e.g. 40W, 400kHz, 100µJ) :

typical process requires $10\mu J \rightarrow MUST ATTENUATE 10X$

High power, <u>variable</u> pulse rate laser (e.g. 40W, 200kHz – 8MHz, 200μJ – 5μJ) :

typical process requires 10µJ

→ set pulse rate to 4MHz (and use full laser power)

Variable pulse rate gives more speed

pulse energy E determined by material and process requirements

"True" variable pulse rate gives speed

PRF [= process speed]

variable PRF ⇔ higher process speed

Variable PRF - better process optimization

blue curves: areas between E=1 μJ and E=50 μJ denote parameter space for typical applications <u>laser # 1</u>: fixed PRF (40W @ 400kHz), equipped with "pulse on demand" system ⇒ covers <u>red arrows</u> in parameter space <u>laser # 2</u>: variable PRF (10W @ 50kHz-8MHz), equipped with "pulse on demand" system ⇒ covers green area in parameter space

Although laser # 1 is more powerful (40W), laser #2 (10W) covers a much broader area in the application parameter space due to the flexibility of its PRF. This is a clear advantage because the parameter window for many applications is small and thus requires fine adjustments of the pulse energy as well as the PRF.

Flexibility: Pulse on Demand option

Pulse on Demand (PoD) – full user control over DUETTO pulse timing

- Fast digital switching (pulse / no pulse) with single-pulse precision up to > 4 MHz with <u>no first-pulse problem</u>
 - via TTL user input or software-controlled
- Fast analog modulation (e.g. attenuation)
 - via analog user input or software-controlled

Flexibility: Why burst mode?

Burst mode improves deposition rate and surface smoothness

Applied Physics Express 2 (2009) 042501 (Deposition of TiO_2 thin film)

Bandwidth

Burst mode increases ablation rate

Phot. Spectra, issue 11, 2009. (Ablation of Si)

Flexibility: PoD digital & analog modulation

⇒ Fast and simple analog modulation (e.g., attenuation of laser output)

First, some terminology:

Burst: a group of pulses with a spacing in the order of 10 nanoseconds. The burst is repeated with the PRF.

Flexibility: FlexBurst[™] feature

Flexibility: *FlexBurst*[™] – a few examples

Bandwid

U

С

t

S

me.

0

d

r

Ρ

- Picosecond lasers offer improved quality, faster processing speed for "fine" ablation processes
- Duetto flexible, modular industrial picosecond system for micromachining
 - Broad repetition rate range for effective process optimization
 - Wavelength flexibility (IR, green, UV)
 - High-power add-on module
 - FlexBurst pulse control
- Thin-film, surface, microstructuring applications
 - Precision machinery, semiconductor, biotech, solar cell, security,

DUETTO[™] product family offers

- Modular options
- Flexibility
- Industrial Reliability
- Optimized process
- Cost-efficiency

