Connect the World by lighting the way — the essential link in next-generation optical connectivity

3D Lithography is lighting the path toward scalable and reliable processes for integrating active components into PICs

Vanguard Automation on a Page

Unique IP and Fully Automated Tool Chain for Photonic Interconnects

2018

Joint Venture between KIT Spin-Off and ELAS Technologies GmbH – headquartered in Karlsruhe, Germany

2024

Joined Mycronic AB (publ) Swedish high-tech group

MYCRONIC

Unique IP

Growing patent families in the field of 3D lithography and photonic packaging

Products

Process technology incl.
Systems, Software,
Consumables, related
Support and Services

50+

Employees (17 nationalities)

vanguard

AUTOMATION

MYCRONIC

Photonic Integrated Circuits are Growing Rapidly

Telecom/ Datacom

AI/Optical Computing

Sensing

Quantum Technologies

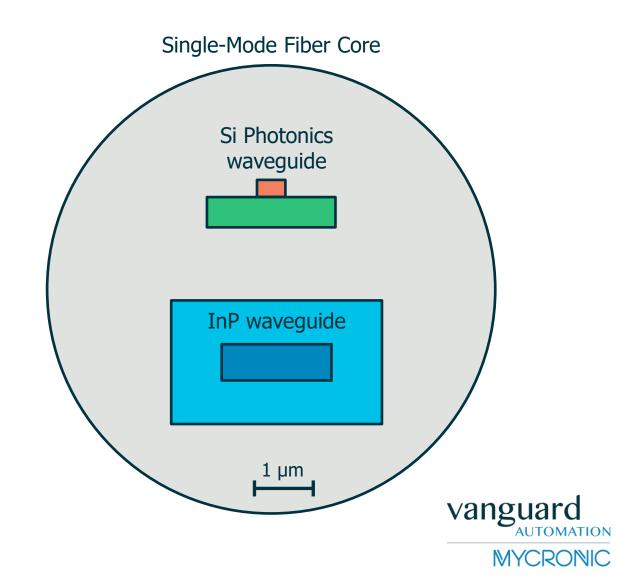
Space & Defense

Mission

"Building upon unique IP and expertise in photonics packaging, we empower research and industry to design and manufacture next-generation optical devices through automated solutions that overcome design, performance and scalability challenges."

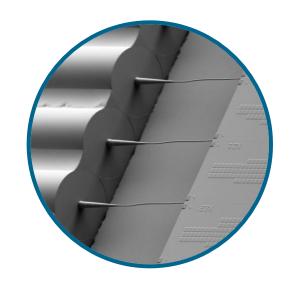
Today's Packaging and Assembly Challenges

Different Mode Field Sizes and Heterogenous Material Platforms


Mode field matching

High-precision assembly alignment

Fast and reproducible packaging


Reliable under various conditions

About 80% of the cost of photonic integrated systems are generated by the packaging process

Enabling Next Generation Photonic Integration and Packaging Solutions with 3D Laser Lithography Solutions

Photonic Wire Bonding (PWB)

Low loss connections to arbitrary mode fields

Automated, reproducible and fast

Reliable connections under various conditions

High interconnect density (compact modules)

High degree of **design flexibility** for hybrid multi-chip integration

Unique Solution to Photonic Packaging and Integration

Industry-Grade 3D Nano-Printed Photonic Interconnects

Limited Scalability

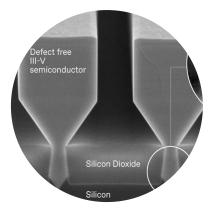
Performance, Scale, Design Flexibility

Complexity

Lens Active Alignment
Current devices are built with
active alignment. Limits
miniaturization and increases
overall package size.

3D in-situ nano-printed lenses allow parallel optical connections in a much smaller form factor. Improves coupling efficiency and increases Yield

GT-PI


Micro-Optical Lenses

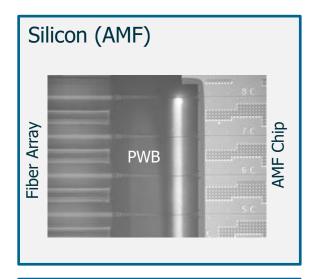
Fast, low loss connections between known-good components. No alignment, no lenses, smaller packages, enabling new designs.

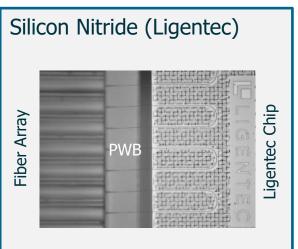
GT-PT

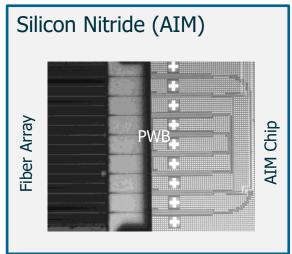
Photonic Wire Bonds

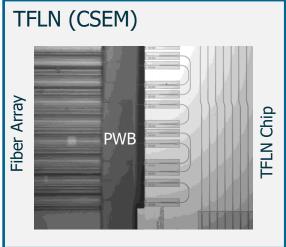
Heterogenous Integration
Direct laser integration on silicon
SOI wafer. Locked into specific
components, long
development times, lower
yields.

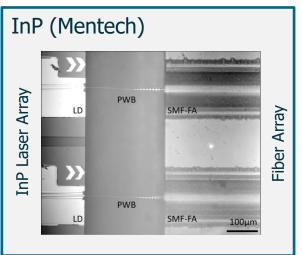
PPA Metrics: Techniques for **Integrating a Laser into a Silicon PIC**

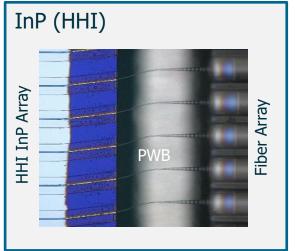

S. Sekhar, W. Bogaerts, L. Chrostowski, et al., Roadmapping the next generation of silicon photonics, 2024

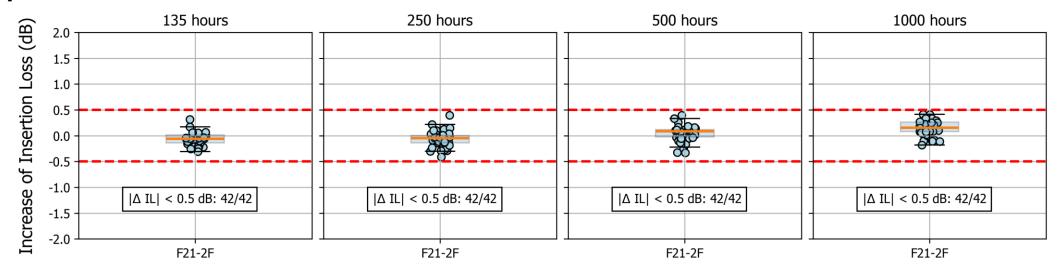

		← →	— —	<u></u>		← →
Integration	Conventional LD-ISO-FAU-PIC	Hybrid 2.5D FSO →FaML	Hybrid 2.5D PWB	Hybrid 3D Flip Chip/TP	Heterogenous Dir. Bonding/TP	Monolithic Heteroepitaxy
Coupling loss	> 2 dB	0.3 dB	0.5 dB	1 dB	1 dB	Few dBs
Output power	High	High, 1 W	High, 500 mW	Medium	Medium	Low
Pol. ctrl.	Needed	Needed	No need	No Need	No Need	No Neeed
Therm. mngt.	Easy	Easy	Easy	Medium-Difficult	Difficult	Medium
Linewidth red.	N/A	Good- Best	Good- Best	Good	Best	Good
Assembly size	Large	Medium- Small	Medium-Small	Small	Smallest	Smallest
On-chip	No	No- Yes	No- Yes	Yes	Yes	Yes
Pckg. style	KGD	KGD	KGD	KGD	All or nothing	All or nothing
Test	Die	Die-Wafer	Die-Wafer	Die-Wafer	Wafer	Wafer


PWBs and FaMLs

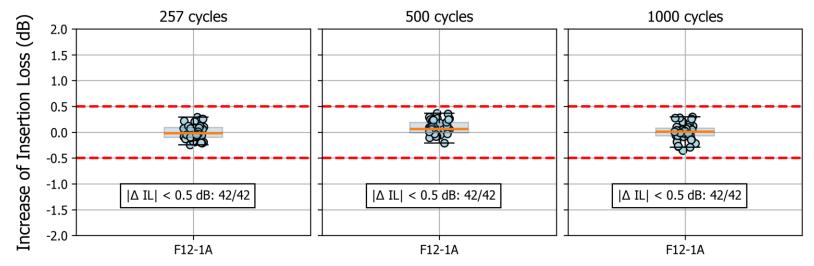



Towards Standardized Process, Application, and Manufacturing Design Kits





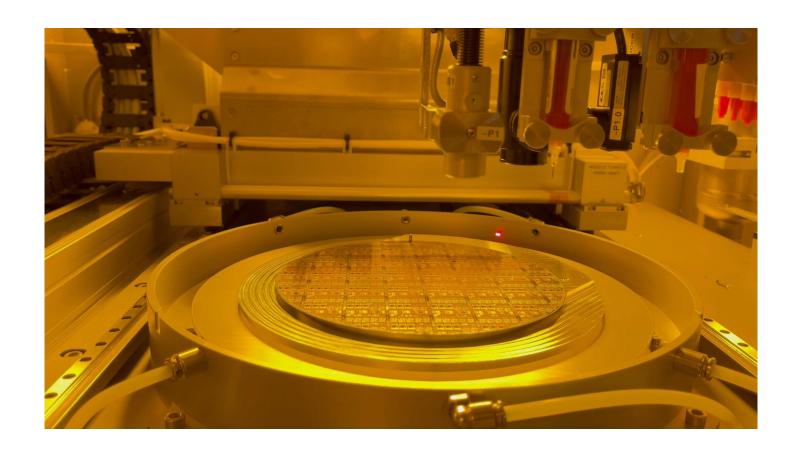
Initial Insertion Losses ∼ **1.5** dB



Reproducibility & Reliability: Photonic Wire Bonding

Damp Heat 85°C and 85% RH

Temperature Cycle -40°C to +85°C



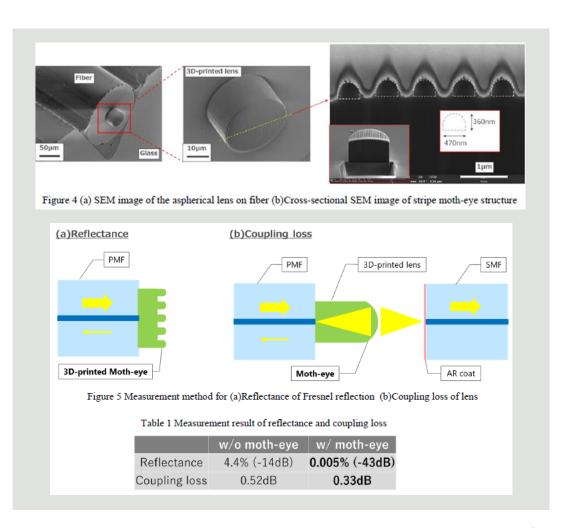
Industry Proven Photonic Integration and Packaging

Fully Automated Solutions with 3D Laser Lithography

Wafer Level & Batch Processing for Photonic Integration

Active Device Integration
High Reliability & Yield
Mode-field-matching
Relaxed Pick & Place
Tolerances

3D-printed aspherical lens with moth-eye anti-reflection structure


"3D-printed aspherical lens with moth-eye anti-reflection structure",(2024)

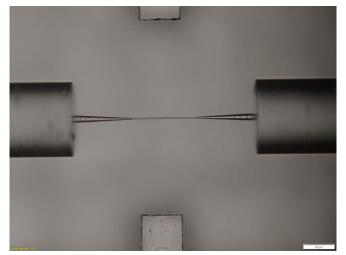
Y. Mizuno et al., Proc. SPIE 12898, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XVII, 128980R

Reflectance on the lens surface was reduced from 4.4% to 0.005% at 1550 nm wavelength

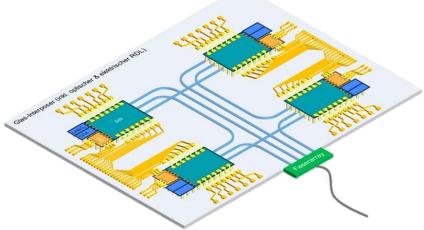
Coupling efficiency to fiber is **improved** from -0.52 dB to -0.33 dB

Structure size 360 x 470 nm

Recent Quantum Applications from Ecosystem Partners & Users


SPOC - Scalable Packaging for All-Optical CV Quantum Computing

https://www.izm.fraunhofer.de/en/news_events/tech_news/spoc.html


Glass-based fully optical **quantum processor**.

Photonic integration of optical chips and fibers by **photonic wire bonding**.

Increased coupling efficiency by **50%**.

Use Cases – 3D-Printed Lenses

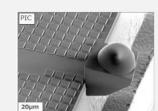
Relaxed Alignment Tolerances

Maximize Coupling Efficiency

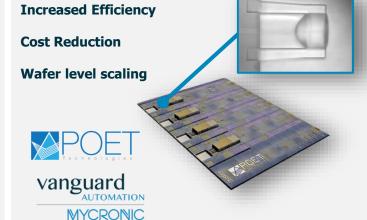
Low Back Reflectance

"3D-printed Beam Expanding Lens for Chip to Fiber Vertical Coupling",(2024) Y. Mizuno et al., 2024 IEEE 74th (ECTC), Denver, Colorado, USA)

Vertical coupling


Wide bandwidth (1260 to 1575 nm)

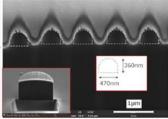
Relaxed alignment tolerance $\pm 10 \mu m$


SUMITOMO

1.2dB coupling efficiency

Connect with Innovation

Collaboration to incorporate 3D-lithography technology into POET's Optical Interposer $^{\text{TM}}$ platform.

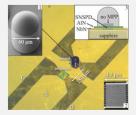

"3D-printed aspherical lens with moth-eye anti-reflection structure",(2024) Y. Mizuno et al., Proc. SPIE 12898, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XVII, 128980R

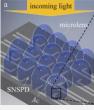
Reflectance on the lens surface was reduced to **0.005%**

Coupling efficiency to fiber is improved to -0.33 dB

Structure size 360 x 470 nm

Quantum Applications


Cryogenic temperatures | No degradation | Broadband working range 530 – 2000 nm


"Superconducting nanowire single-photon detector with 3D-printed free-form microlenses", Opt. Express 29, 27708-27731 (2021)

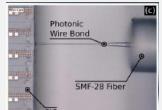
The paper demonstrates FaMLs operating at cryogenic temperatures down to 4.6K

Assemblies undergo 10 cool down cycles

Use Cases – Photonic Wire Bonding

Active Device Integration

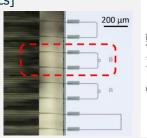
Multi-Chip Hybrid Integration | Passive alignment process | Mode-field-matching | Relaxed pick and place tolerances of \pm 30 μ m

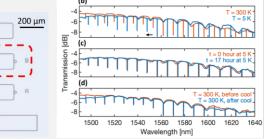

"High-power and narrow-linewidth laser on thin-film lithium niobate enabled by photonic wire bonding", Franken et. al. APL Photonics 1 February 2025; 10 (2): 026107

"Packaged Tunable Single-Mode III-V Laser Integrated on a Silicon Photonic Integrated Chip Using Photonic Wire Bonding",(2024) Deenadayalan et al., IEEE 74th (ECTC), Denver, Colorado, USA)

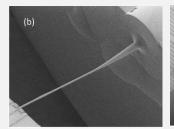
"SiEPICfab: the Canadian silicon photonics rapid-prototyping foundry for integrated optics and quantum computing",(2021) Darcie et al., Proc. SPIE 11691, Silicon Photonics XVI

Quantum Applications


Cryogenic temperatures | (IL) < 2dB | No degradation


"Cryogenic Optical Packaging Using Photonic Wire Bonds", (2023)

arXiv:2307.07496v1 [physics.optics]



"Plug-and-Play Fiber-Coupled Quantum Dot Single-Photon Source via Photonic Wire Bonding", Adv Quantum Technol. 2023, 2300227

Vanguard **SYMPHONY 1000**

Unique IP and Fully Automated Tool Chain for Photonic Interconnects

Machines

SONATA 1000

Automated 3D Lithography-based Nano Printing

REPRISE 1000

Automated Pre- and Post-Processing: Development and Encapsulation

Software

Composer and BrightWire3D

Software for Machine Control, Process Development and Management

Materials and Services

VanCore Resist Series

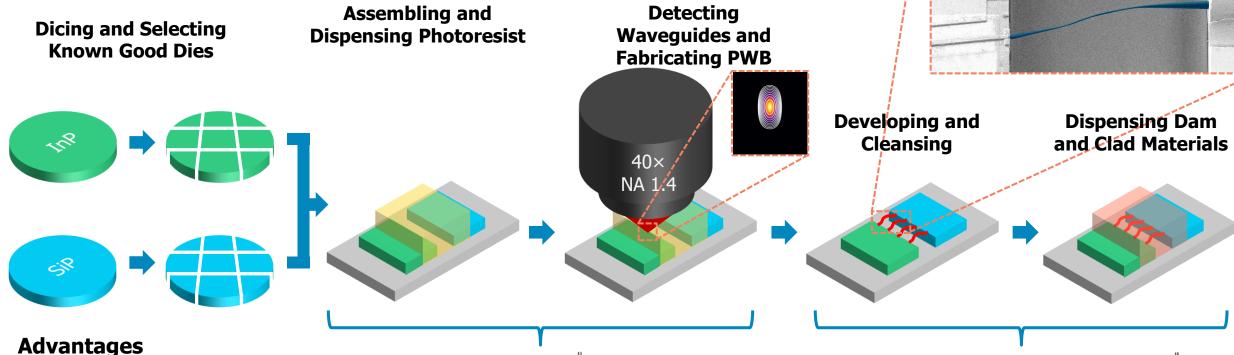
Materials for the production of PWBs and Micro Optical Lenses

Professional Services

- Training
- Process Development
- Feasibility Studies
- Development Support
- Maintenance Services

COMPLETE INDUSTRY READY SOLUTION

Collaborative Ecosystem: Partners and Users



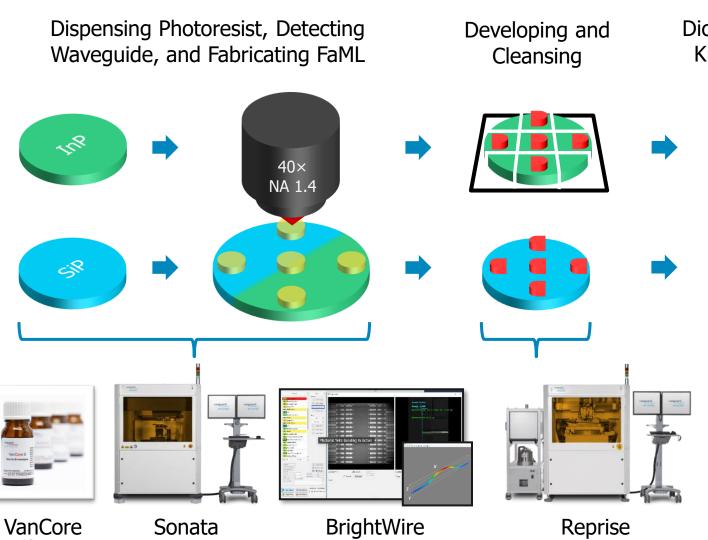
ficontec

3D Lithography for Photonic Packaging

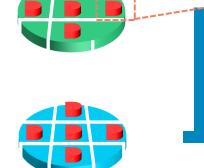
Strategy 1: PWB for Die-Level Hybrid Integration

- Passive alignment
- Up to \pm 30 µm component placement offset (all axes)
- Mode field adaptation and low insertion loss
- High interconnect density

100 µm



VanDam & VanClad


Reprise

3D Lithography for Photonic Packaging

Strategy 2: FaML for Wafer-Level Hybrid Integration

Dicing and Selecting Known Good Dies

- Accommodates flip-chip approach
- Placement tolerance up to ±15 µm, enabling passive alignment
- Wider distance between components to facilitate bulk optics (e.g., isolator)

25 µm