Sub-ns Microchip Lasers Technology: Overview and Progress in Health Science and Industrial Applications

Florent Thibault

1. Company overview

- 2. Laser technology
- **3.** Added value for the process
- 4. Conclusion and perspectives

www.teemphotonics.com

(ampostag

hotoni

www.teemphotonics.com

- Founded November 1998 (Spin-off Schneider Electric/GeeO)
 Privately held
 - HQ in Meylan near Grenoble
 - Transformed business model from telecom to commercial lasers
 - > Pioneered integrated optical EDWA[™]
 - > Acquired MIT-based picolaser line in 2005 from JDSU
 - Successfully integrated acquisition
 - 6000 picolasers shipped
 - 40 people
 - Cleanroom production facility
 - Worldwide presence, US-sales office,15 distributors

www.teemphotonics.com

Secured Intellectual Property

Teem Photonics owns or controls the intellectual property relevant to all its products:

Exclusive IP rights on Passively Q-Switched picosecond microlaser, patent number US 5394413

- > pulse duration are under 1 ns
- > or
- > peak powers are in excess of 10 kW
- > or
- > ratio of peak power to pump DC power are above 10 000.

License agreement on high power fiber technology with IMRA

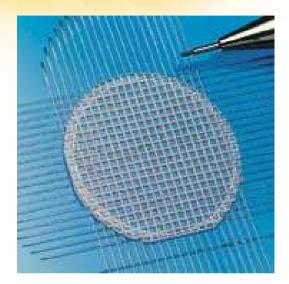
Volume capable and flexible manufacturing

High End production floor

- Class 10000 clean rooms and class 100 workstations
- Production of > 100 lasers /month
- Low fixed manufacturing costs
- Proven high production yields

Strong in-house R+D team (20% of all employees)

- Laser design
- Mechanical design
- Electronics design
- Software design

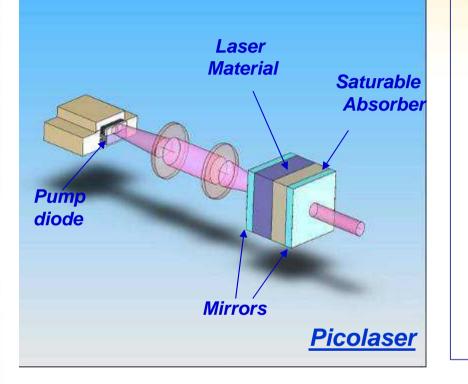


2 – Laser technology

The simplest of the Ultrafast lasers

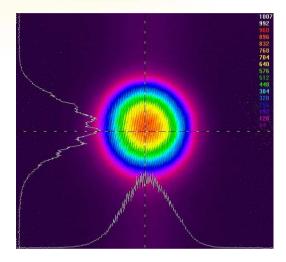
Based on a unique technology combination:

- Microchip technology
 - > Cost-effective
 - > Reliable
 - > Compact and rugged
- Passive Q-switching
 - > Remarkable pulse characteristics
 - > Naturally good beam quality



« Picolasers » = passive Q-switched microchip lasers

Picolaser principle of operation



Picolasers "naturally" turns the continuous power of a semiconductor laser diode into a stream of picosecond pulses, without any external electronic devices.

- 2 main Picolaser product lines (non amplified) :
- > **Microchip** : high repetion rate, lower energy
- > **Powerchip** : high peak power, on-demand pulse emission

Picolasers performances overview

- At 1064nm, from the oscillator output :
 - > Pulse duration : down to **300ps**
 - > Peak power : up to 300kW
 - > Pulse energy : up to 100µJ
 - > Repetition rate : up to 140kHz
 - > Output power : up to 400mW
 - > Beam quality : TEM00, **M²=1.05 typ**.

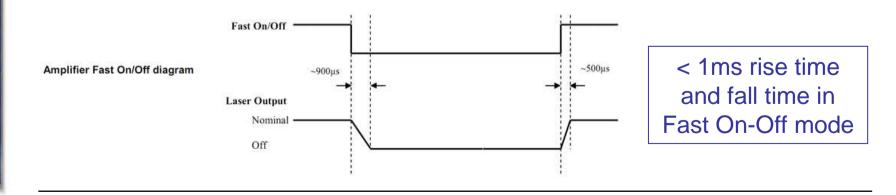
- Reliability : Over 45,000 hours of operation @ 1064nm MTTF ~ 17,000,000 hours
- Some drawbacks still...
 - > Limited output power due to small cavity volume
 - > Limited process orientated controls

>

Overcoming output power limitation

Development of fiber-based MOPA architecture to reach higher power levels while valorizing Picolasers pulse characteristics and industrial grade reliability.

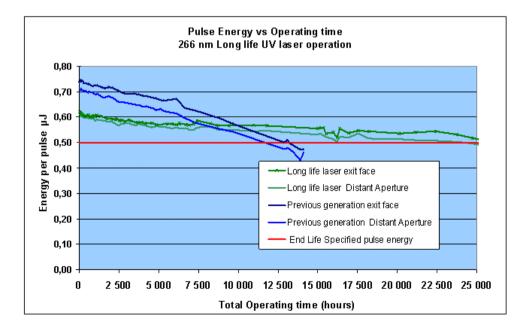
PicoFlash[™] series Up to >5W@1064nm Up to 40kW peak power Up to 140kHz rep.rate TEM00, M²=1.05 typical


PicoSpark[™] series Up to >10W@1064nm Up to 200kW peak power Down to 750ps pulses TEM00, M²=1.05 typ.

amposta.

Making laser integration easier

- Development of OEM integration and process orientated functionnalities:
 - > Output trigger for synchronization with other equipments
 - Fast On-Off functionality dedicated to high speed processing (scanners head)
 - Real time output energy control for complex all-automated processing
 - > Output security signals for global laser safety management


amposta.

Extending to shorter wavelentghs

Intrinsic capacity to convert efficiently to Deep UV wavelengths thanks to high peak power
 All Picolasers series available down to 266nm

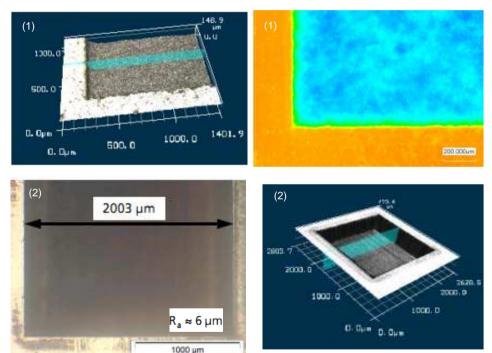
>PicoFlash[™] series lasers available down to 355nm
>High peak power PicoSpark[™] lasers down to 532nm

Design and know-how combine to provide over
 25,000 hours of operation
 @ 266nm for Picolasers

3 – Added value for the process

Main features from the applicative point of view

- Laser characteristics :
 - > High peak power / Short pulse
 - > UV wavelengths
 - > Cost effective and reliable
 - Compact and air-cooled
- Favourite playgrounds :
 - > High resolution marking & scribing of virtually all materials
 - > Controlled heat-input selective ablation processes
 - > NL interaction driven processes (Supercontinuum, TPA)
 - > UV or DUV applications
 - > Industrial environment


anoosla.

Hard materials processing capability

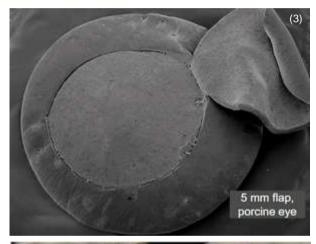
Good surface quality and removal rate demonstrated for machinig oxydes, diamond-like structures, ceramics, hard metals..

Applications / Markets:

- Diamond, PCD, CVD marking and scribing
- Ivory, tooth, dental ceramics machining
- SiC drilling
- > Titanium layers selective ablation

Key parameter : high peak power

(1) Dental ceramics machining (Image courtesy of ILT, Germany)(2) PCD machining (Image courtesy of ILT, Germany)

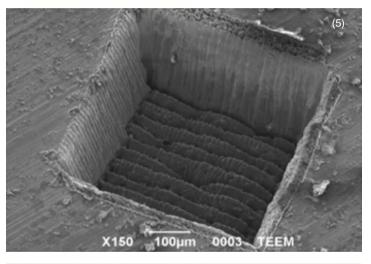

Transparent materials processing capability

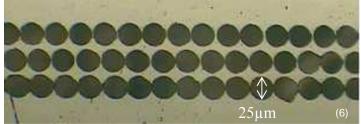
Thin glass plates cutting with µm-scale chipping Bulk marking with excellent repeatability proved in various structures (crystal, glass, plastic) – No µcracks

Applications / Markets:

- Biomedical : Lasik surgery, cataract surgery
- Glass plate cutting for touchscreens or biological applications
- Bulk marking transparent plastics for traceability purpose (CR39, Polycarbonate, 1.67)
- Anti-counterfeit semi-transparent bulk marking for watch glasses

Key parameter : high peak power

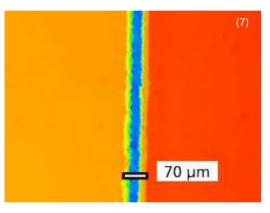


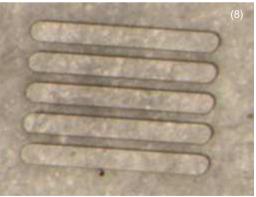

(3) Pig eye flap (Image courtesy of Luebeck university, Germany)

(4) Glass engraving (Musée de la dentelle, France)

Reflective material processing capability

- Micron-scale texturing thanks to low HAZ Marking on metals even at low energy
- Applications / Markets :
 - Surface texturing of metals parts to reduce friction (PicoSpark[™])
 - Fine scale scribing of cast or injection moulds
 - > Highly reflective metals plain marking

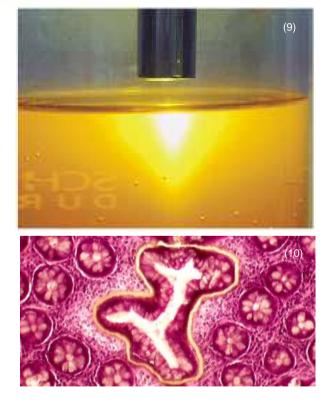

Key parameter : high peak power


(5) Stainless steel machining(6) Single-pulse marking on aluminium (6µJ only)

amposta.

Controlled heat input micromachining

- Improved quality compared to ns lasers while conserving the economical figure
- Cost-effective alternative to ultrafast lasers or EDM
- Applications / Markets :
 - Multilayers selective removal (ITO, LEP,...)
 - Electronics : to manage increasing components density (PCB tracks correction, glue removal)
 - Polymers 'cold' processing (polyimide, PET, polyurethane,...)
 - Micromachining of thin metal foils (clock-making, micromechanics)
 - Key parameter : short pulses



(7) Flex PCB cutting – Cut in 500µm thick polymide layer with 532nm (image courtesy of ILT, Germany)
(8) PET cutting – Cut in 15µm thick PET with 355nm (image courtesy of ILT, Germany)

Cost-effective UV solutions

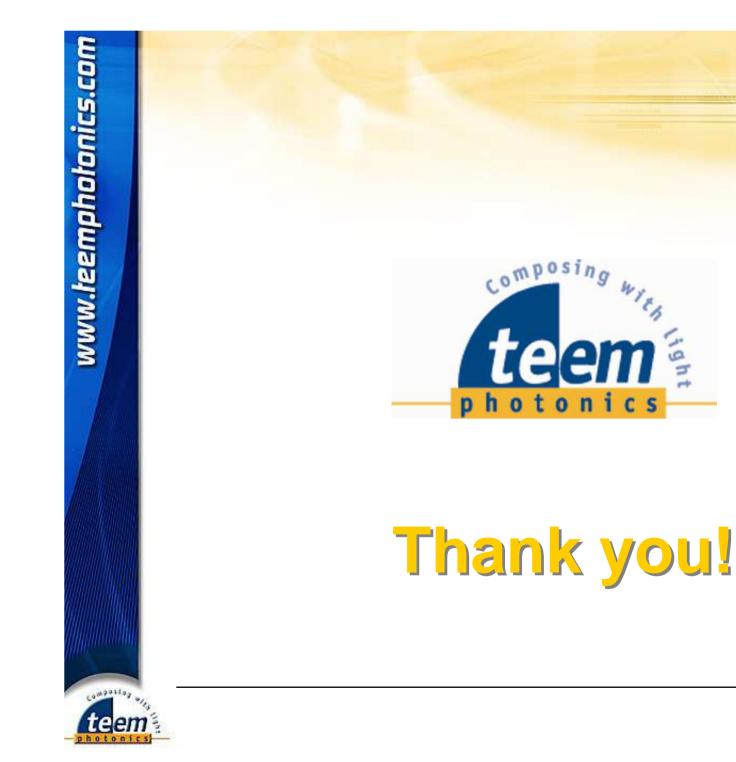
- For industrial environment
- Can reduce the COO of excimer lasers based processes
 - Applications / Markets :
 - Photoluminescence (UVLED wafer testing, LIF)
 - > **Biomedical** (µ-dissection)
 - > PCB repair
 - > LCD/FPD panel repair
 - Excimer lasers replacement market

Key parameters : cost efficiency, high peak power

(9) Laser-induced fluorescence (Courtesy of Kinzle, Germany)

(10) Micro-dissection of biological tissue (Courtesy of mmi, Germany)

4 – Conclusion and perspectives



Conclusion and perspectives

Picolasers can offer picosecond class laser solutions at nanosecond economics

- Market evolutions seem to be increasingly pointing towards such laser solutions
- Qualified applications fields continuously expanding, with a wide range of segments already penetrated so far :
 - > Eye surgery with flap making
 - > Photovoltaics with CIGS cell patterning
 - > Electronics and displays with PCB, LCD and FPD repair
 - > More to come...

