Industrial turn-key laser solutions for ultrafast micromachining

Dr. Kurt Weingarten kw@time-bandwidth.com

Background of Time-Bandwidth Products

- Spin-off of ETH Zurich "SESAM[®]" know-how, technology leader
- First product sales 1996
- Headquartered at Technopark Zurich
- International sales network representatives/distributors in all key markets
- Products established as reliable in "24/7" operation for industrial applications
- Industrial customers in semiconductor, biotech, material processing, and more

Ultrafast Laser Product Range

Based on **SESAM®** Technology for modelocking (**SE**miconductor **S**aturable **A**bsorber **M**irror) and diode-pumped laser materials

Pulse durations<50 fs to >500 psWavelengths260 nm - 1550 nmOutput power<1 W to >50 WPulse energiesup to 1 mJRepetition ratessingle shot to >10 GHz

Modular design

Customizable for scientific or industrial applications

Broad set of performance parameters

Cold ablation – advantages of picosecond lasers

- Substantial advantages compared to nanosecond lasers:
- mostly non-thermal process
 - significantly reduced Heat-Affected-Zone (HAZ)
 - significantly reduced recast
 - less micro-cracks
- mostly wavelength independent (multi-photon-absorption)
- suitable for almost all materials

better precision

higher surface quality

- Nanosecond lasers don't deliver the quality required (heat affected zone, recast, etc.)
- Very small, precise features required
- Highly brittle materials (ceramics, glass, ...)
- Very strong materials (carbides, diamond, ...)
- Mixed materials (polymers on hard substrates, ...)
- Selective processing of multi-layer thin films (CIGS, ...)
- and more ...

DUETTO product family - key performance parameters

output powerup torepetition rate50 kHpulse energyup topulse width10 pspeak powerup towavelength1064M² (TEM₀₀)< 1.3

- M² (TEM₀₀)
- up to 50 W 50 kHz – 8 MHz up to 200 µJ 10 ps up to 20 MW 1064 nm

DUETTO – integrated industrial MOPA

Master Oscillator Power Amplifier diode-pumped picosecond laser system

Duetto Base Model

- > 10 15W average power
- Footprint: 41 x 71 cm (laser head)
- Compact, rack mountable controller & chiller
- Front panel control or via computer (RS-232)

controller unit

chiller unit

DUETTO - modular, customizable options

- Power scalable with booster amplifier
 - FUEGO optional power booster to 10W to 50W average power
- Frequency Conversion
 - to 532 nm (green): >60% conversion efficiency
 - to 355 nm (UV): >30% conversion efficiency
- Pulse on demand POD
 - required for sophisticated scanning / patterning
 - avoids typical pre-pulse or first-pulse overshoot often seen in other systems
 - Individually triggerable pulses single-shot to MHz regime
 - or arbitrary groups of pulses
 - FlexBurst[™] technology
- Other options
 - timing synchronization to external clock with sub-picosecond accuracy
 - variable (switchable) pulsewidths
 - repetition rate at oscillator output (80 MHz typical)

Flexibility: Wavelengths

Flexibility: More Power

Time-Bandwidth®

Fixed versus variable repetition rate (1/2)

Variable repetition rate:

The maximum power is always available at every repetition rate.

Fixed versus variable repetition rate (2/2)

Fixed repetition rate:

The maximum power is available only at one repetition rate (max.)

Repetition rate

Variable pulse rate gives more speed

pulse energy E determined by material and process requirements

Flexibility – PoD – digital switching

PoD = Pulse on Demand

No overshoot (no first-pulse problem)

Single-pulse precision up to > 4 MHz (fastest on market)

Time-Bandwidth®

Flexibility – PoD – fast analog modulation

Fast and simple analog modulation (e.g. attenuation of laser output)

Flexibility – FlexBurst[™] technology (1/2)

- Generation of <u>arbitrary</u> bursts of pulses
- Frequency of bursts adjustable
- Time between pulses within burst 12 ns
- Number of pulses adjustable
- Amplitude of each <u>individual</u> pulse adjustable
- NO first pulse problem !

Flexibility: Why burst mode?

Burst mode improves deposition rate and surface smoothness

Applied Physics Express 2 (2009) 042501 (Deposition of TiO_2 thin film)

Burst mode increases ablation rate

Phot. Spectra, issue 11, 2009. (Ablation of Si)

DUETTO – excellent field reliability

Engineering driven performance

- attentive, responsive, highly trained team
- emphasis on accurate (conservative) specifications and promises
- focus on cost transparency and effectiveness
- Field service resolved remotely (phone and/or email) in most cases
- Excellent design minimizes problems
 - SESAM IP and know-how results in excellent oscillator reliability
 - Key choices in "sensitive" components for lower cost, better performance, stability, and reliability
- Result: Duetto systems work in the field, factory returns not required ...
 - first units in the field since 2005

DUETTO – excellent long-term stability characteristics

Time-Bandwidth®

Many (many!) possible applicatons ...

Cutting of battery-foils (mixed metal-ceramic compound materials) Cutting and structuring of LTCC and Al_2O_3 ceramic

Structuring of glass and polymers for enhanced cell-growth & implants

DUETTO product family offers

- Modular options
- Flexibility
- Industrial Reliability
- Optimized process
- Cost-efficiency, competitive TCO

Thank you very much

- and special thanks for their support to
- Department of Photonic Technologies at Friedrich-Alexander-University- Erlangen-Nürnberg
 - Bern University of Applied Sciences
 - Bavarian Laser Centre
 - Kugler GmbH
 - 3D-Micromac
 - ETH Zürich

Examples

- Complicated: depends on many process and material parameters
 - Two key criteria
 - Quality
 - Productivity or Process Speed: volume removal rate (VRR, mm³/minute/Watt)
- Recent measurements have shown
 - VRR can be better with femtoseconds for some materials, some wavelengths
 - due to some increase in penetration depth (circa 2X)
 - at a given average power
- However:
 - 10X more available picosecond power results in 5X greater VRR
 - difference is smaller or negligible for many materials and other wavelengths (e.g. green)
 - VRR "always" better for higher power systems
- Picosecond quality excellent, good enough in most (>90%) manufacturing applications
 - UV picosecond can be better than IR femtosecond depending on the application smaller spot size different absorption and photo-chemical reaction – can give very high quality
- Picosecond systems are turn-key and proven for approaching 10 years in industrial environments

Volume Removal Rate (VRR) mm³/min

Pulse Repetition Rate PRR

Why move to femtoseconds?

•Processing of materials transparent for cw and ns-pulses at same wavelength

- stronger multi-photon absorption than picoseconds
- HAZ can go from sub-micron with picoseconds to sub-sub-micron with femtoseconds

•LIFT fiber-components

- support sub-picosecond pulsewidths (glass fiber optical bandwidth)
- can scale into multi-100W average power (large-mode fiber)
- can demonstrate adequate pulse energy for cold ablation (10's of microjoules)

•enables (requires) high-speed scanning

- e.g. line scanning >10m/s

•Because its new 🙂

•LIFT: Leadership in Fiber Technology www.lift-project.eu

Femtosecond MOPA-system development

		Goal
Average power	> 50 W	> 200 W
Pulsewidth	~ 700 fs	< 500 fs
Pulse energy / rep. rate	100 µJ @ 400 kHz	> 100 µJ @ 2 MHz
Peak power	> 20 MW	200 MW
Center wavelength	1030 nm	1030-1040 nm
Output polarization	linear, 250:1	polarized, >100:1
Pulse-to-pulse stability (energy)	< 0.4% rms	< 1% rms (short term) < 1% rms (long term)
Beam quality (M ²)	< 1.3	< 1.2

Glass welding (1/2)

BAYERISCHES

Process mechanism:

Plasma generation

V

High laser repetition rate (\geq 1 MHz) leads to quasi-continuous energy coupling into glass

Plasma heats glass material

J

Result: Internal melting (= welding) of glass material

Typical laser process parameters:Wavelength:1064 nmLaser pulse duration:~ 10 psLaser pulse energy: $1 \ \mu J - 10 \ \mu J$ Repetition rate: $\geq 1 \ MHz$ Speed:10 mm/s - 200 mm/s

Glass welding (2/2)

Advantages over other joining techniques: (mechanical bonding, optical contacting, gluing, soldering, diffusion bonding, laser welding (CO_2))

- > no additional material required
- chemically stable
- > no big thermal expansion
- no cracks
- small weld seams
- weld strength could be comparable to the strength of base material
- single-step process

Example: leak test of weld seams

Drilling of holes in metal (1/2)

- Through holes in 600 µm thick Fe₂O₃
- 1064 nm
- task in this case:
 quality of edge

Drilling of holes in metal (2/2)

•Through holes in 600 µm thick Fe₂O₃

•Advantage of picosecond laser:

- ► No burr
- ► No debris

Comparison: nanosecond fiber laser at 1070 nm

31

Scribing of Al₂O₃ (1/2)

Scribing of aluminium oxide ceramic substrates.

Example for mechanical scribing

Scribing of Al₂O₃ (2/2)

Scribing of aluminum oxide ceramic substrates.

Scribing with picosecond laser (1064nm, low energies)

Advantages: (vs. mech. method or nanosecond laser)

- less debris
- less melt effects
- less thermal load for el components

ime-Bandwidth

less cracks

Ablation of Indium Tin Oxide (ITO)

•300 – 400nm thick ITO layer on glass

•1064 nm
•very low pulse energy
•but high speeds
•of ≥ 2 m/sec

> different substrates possible, such as organic thin films

Cutting of quartz glass

•Cutting of quartz glass: comparison 532 nm vs. 355 nm

 Higher pulse energies required by quartz, and low repetition rates due to sensitivity to heat

•355 nm

•slower, but sharper, nicer edges

•faster, but slightly worse edges

•532 nm

Process mechanism:

www.lpt.uni-erlangen.de

Typical laser process parameters: Laser pulse duration: 10 ps Laser pulse energy: $10 \ \mu J - 100 \ \mu J$ Speed: $0.5 \ mm/s - 500 \ mm/s$

36

Example: Marking of quartz glass

Duetto, 1064 nm, 10 ps Repetition rate 50 kHz Speed 20 mm/s

22 single circles in 2 bundles, $\mathcal{O} \approx 5 \text{ mm}$

100 µm below surface

Advantages of ps-laser vs. ns-laser

- > microcracks scalable down to ~1 µm
 (~50 µm with ns-laser)
 → sharper edges
- marking very close to surface possible without damaging the surface
- robust process window
- Marking of highly transparent materials possible like quartz
- > possible marking speed: ≫ 100 mm/s 10⁶ spots/s vs 10⁴ spots/s

ns-laser, 532nm (thermal process causes microcracks)

Applications in biotechnology and medical engineering (ophthalmology)

Dimples in stainless steel

- •Drilling of dimples on stainless steel cylinder, a few cm diameter
- •1064 nm
- low pulse energy to avoid melting
- ► low burr
- ► low debris
- ► smooth profile
- Comparison to ns Nd:YAG laser:
 - lots of debris
 - high burr

Machining of nozzles in Poly Crystalline Diamond

•1064 nm

 motivation to use picosecond laser:

► precision

high surface quality

Cold ablation – simple guidelines

Cold ablation ⇒ operate near threshold fluence ⇒ need moderate pulse energy

Chichkov, et al., Appl. Phys. A 63, 109 (1996)

 $fluence = \frac{pulse\ energy}{beam\ area}$

High quality ablation is a *gentle* process, it requires:

✓ short pulses typically < 10 ps

✓ high enough fluence typically > 1 J/cm²

✓ not too high fluence typically < 3 x threshold

X

Cold ablation – simple guidelines

Cold ablation ⇒ operate near threshold fluence ⇒ need moderate pulse energy

Example :

 $F_{threshold} = 1 \text{ J/cm}^2$ $F_{operation} = 1.5 \text{ J/cm}^2$ Area = 500 μ m²
(~25 μ m spot diameter) $E = 10 \mu$ J at focus

