

Long-wavelength VCSELs for gas sensing

A. Sirbu*, A.Caliman*, V.Iakovlev["], A. Mereuta*, G. Suruceanu["] and E. Kapon^{*"}

* Laboratory of Physics of Nanostructures, EPFL, 1015 Lausanne, Switzerland " BeamExpress, 1015 Lausanne, Switzerland

VCSEL fabrication approach;

- Results at 1550 nm;
- Results at 2000 nm;
- CO₂ sensing results;
- Summary.

Tunable laser diode spectroscopy, TLDS with longwavelength VCSELs in the 1500-2000 nm range

Gas	Symbol	Absorption line, nm	
Methane	CH ₄	1650	
Ammonia	NH ₃	1512, 1540	
Hydrogen sulphide	H2S	1578	
Carbon Monoxide	СО	1570	
Carbon Dioxide	CO ₂	2004, 1953	
Water	H ₂ O	2003, 1953	
Ethylene	C_2H_4	1617	
Hydrochloride	HCl	1740	

The fine structure of the gas absorption peak consists of single absorption lines.

gas-cell sensing

•Typical VCSEL RIN= -130 dB/Hz corresponds to the shot noise of the photo-detector at ~3 μ A that corresponds to 3 μ W incident power;

•1 mW SM output for optical path length of the order of 10 cm at specified wavelengths is OK;

•A cost-effective technology for building a wavelength inventory is important for large-scale applications.

4 regions on the wafer with different emission wavelengths

- Regions with different output coupling: 20 and 17 pairs in the top DBR

Photoluminescence spectra of InAlGaAs quantum wells at different temperatures

Overview of VCSELs characteristics (20 pairs top DBR)

- Single-mode emission in the full operation range;
- At low currents optical guiding is due to lateral refractive index variation, while at higher currents is due thermal lens;
- Wavelength tuning: 0.4 nm/mA; 0.15 nm/°C

Impact of output coupling

0 °C	P _{max}	l _{th}	D P/ DI
20 pairs	6.8 mW	3.5 mA	0.43
17 pairs	8 mW	5 mA	0.58

Optosensor, Bienne, September 17 2009

LIV and spectral characteristics of 7 mm tj diameter device

Far-field and line-width measurements performed at 2 mW output, RT

Self-homodine line-width measurements performed by M.Grossenbacher, ED EPFL

Wavelength selection in the 2000 nm band

Wavelength tuning

13

CO₂ detection with LPN/BX VCSEL

V.lakovlev, Internal report

Dashed lines– ordinary room air Solid lines– 10 mbar CO₂ Optical path length - 10 cm

Two-species detection: CO_2 and H_2O

Summary

- 1.5 mm VCSELs are produced with a broad range of wavelength inventory on the same wafer of 40 nm, high SM output power of 6.9 mW @ 0°C and 2.5 mW @ 80°C with line-width of 4.5 MHz and 15 nm of tuning range with current;
 Capability of fabrication of 2 mm VCSELs with 0.5 mW SM output;
- 2003-nm VCSELs detection of carbon dioxide (CO₂) and water (H2O) molecules in air is demonstrated.