Laser-based photoacoustic sensing of glucose in aqueous samples

J. Kottmann, J. M. Rey and M. W. Sigrist ETH Zürich 3rd of November 2010 Bern

Outline

- Motivation
- Experimental Technique and Setup
- Results
- Conclusion and Outlook

Motivation

Diabetes as a human metabolic disease:

- Patients need to measure their blood sugar level several times per day
- Preprandial glucose level of a healthy human: 65 120 mg/dl
- Common blood sugar measurements are invasive

Motivation

Diabetes as a human metabolic disease:

- Patients need to measure their blood sugar level several times per day
- Preprandial glucose level of a healthy human: 65 120 mg/dl
- Common blood sugar measurements are invasive

Goal: Development of a non-invasive glucose sensor based on

- MIR spectral region
- Photoacoustic (PA) detection
- Interstitial fluid glucose

Human tissue

- The stratum corneum is between 10-20 µm thick with 10% water content
- Epidermis is usually between 60-100 µm thick, has a 60% water content and is not supplied with blood
- In the MIR only up to approx. 100 μm optical penetration depth
- Measurements of glucose concentration in the interstitial fluid (ca. 15 min time delay)

Glucose and phantom tissue

- Water, gelatine and agar as a first step towards mimicking tissue
- Characteristic glucose absorption peaks at 1034 and 1081 cm⁻¹
- Strong absorption of water in the MIR

Photoacoustic effect and cell design

Volume 80 mm³

Gas piston model:

Optically and thermally thick case

PA signal
$$\propto \frac{I \cdot \alpha}{V \cdot f^{1.5}}$$

Tam C., Rev. Mod. Phys., 1986, **58**, 381-434

Laser Spectroscopy and Sensing

Photoacoustic effect and cell design

- Volume 80 mm³
- Diamond window 163 μm

Gas piston model:

Optically and thermally thick case

PA signal
$$\propto \frac{I \cdot \alpha}{V \cdot f^{1.5}}$$

Tam C., Rev. Mod. Phys., 1986, **58**, 381-434

Laser Spectroscopy and Sensing

Photoacoustic effect and cell design

- Volume 80 mm³
- Diamond window 163 μm
- Flow cell
- Reference chamber

Gas piston model:

Optically and thermally thick case

PA signal
$$\propto \frac{I \cdot \alpha}{V \cdot f^{1.5}}$$

Tam C., Rev. Mod. Phys., 1986, **58**, 381-434

Laser Spectroscopy and Sensing

Glucose depending NPAS measured with the flow cell

- NPAS at 1082 cm⁻¹ (QCL) 944 cm⁻¹ (CO₂-laser) measured in PA chamber A
- NPAS reference measurement measured in chamber B (without laser)
- Shown signal A B
- 100 mg/dl detectable

Fast recording of a spectrum with the QCL

- A single spectrum can be recorded within 5.5 s
- An averaging of the single measurement is necessary

Monitoring time dependent processes with the QCL

Conclusion & Outlook

- Implementation of MIR laser based PA sensor using a doublechamber PA cell closed with a diamond window => strong and stable signals
- Glucose concentrations within the physiological range detected in aqueous samples
- Fast tuning of the EC-QCL allows monitoring time-dependent spectral changes between 1000-1100 cm⁻¹
- Measurement in more complex tissue phantoms closer mimicking human tissue
- Measurement through non-glucose containing layer
- Including the measurement of different parameters (i.e. temperature, humidity and blood pulsation)
- In-vivo measurements with the PA sensor

Sponsoring:

Photoacoustic cell

Combining the PA cell and the flow cell

Overview of *in-vivo* Glucose Measurements

- Making the blood sample-taking more convenient
- Implanted sensors
- Methods of non-invasive glucose measurements:
 - Reverse iontophoresis (GlucoWatch)
 - Optical absorption spectroscopy (NIR and MIR)

Review:

C. E. F. do Amaral and B. Wolf, Medical Engineering & Physics 30(5), 541–549 (2008).

GlucoWatch® Biographer

Fast recording of a spectrum with the QCL

- The glucose concentration can be continuously varied
- Stable measurement conditions
- PA reference chamber for suppression of vibrations and environmental influences
- Pumping can simulate pulsation

Gas coupling method

Power spectrum of the QCL at 800 mA

FWHM of the QCL beam versus distance from the Laser

Output power versus laser currant

FTIR spectrometer with ATR accessory

Laser Spectroscopy and Sensing

ETH Zurich

Motivation

Diabetes as a human metabolic disease:

- Patients need to measure their blood sugar level several times per day
- Preprandial glucose level of a healthy human: 65 120 mg/dl
- Common blood sugar measurements are invasive

Goal: Development of a non-invasive glucose sensor based on

- Mid-ir spectral region
- Photoacoustic detection
- Interstitial fluid glucose

