

Sensors for LiDAR and TOF

Chur, 21.06.2018

Alexandre Pollini Senior project manager, lead on CSEM LiDAR program

Holy grail quest for autonomous navigation (automotive) LiDAR

Image from movie "Monty Python and the Holy Grail"

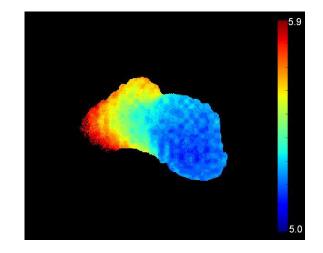
- 1. Reliability
- 2. Low-cost
- 3. All-weather
- 4. Timestamped 3D images within range precision
- 5. Calibrated measurements (e.g. B&W shift)
- 6. Field-of-view: 360° in AZ and EL
- 7. Nonmechanical scanning
- 8. Measurement rate to avoid motion artefact

(from SPIE-Optical Engineering)

CSEM at a glance

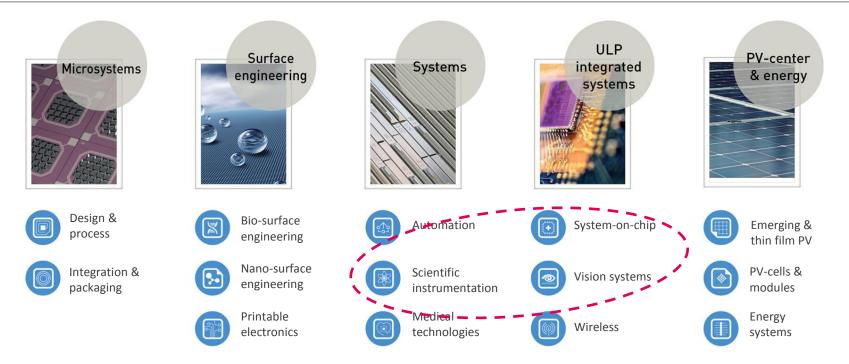
Our mission

Development and transfer of microtechnologies and electronics to the industrial sector


to reinforce its competitive advantage via:

- Cooperation agreements
- Creation of start-ups
- Licensing (technology, IP, algorithms)

Status


Incorporated, not-for-profit **RTO**, supported by the Swiss Government

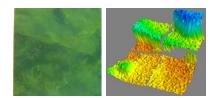
- Public-private partnership
- Swiss watchmaker heritage

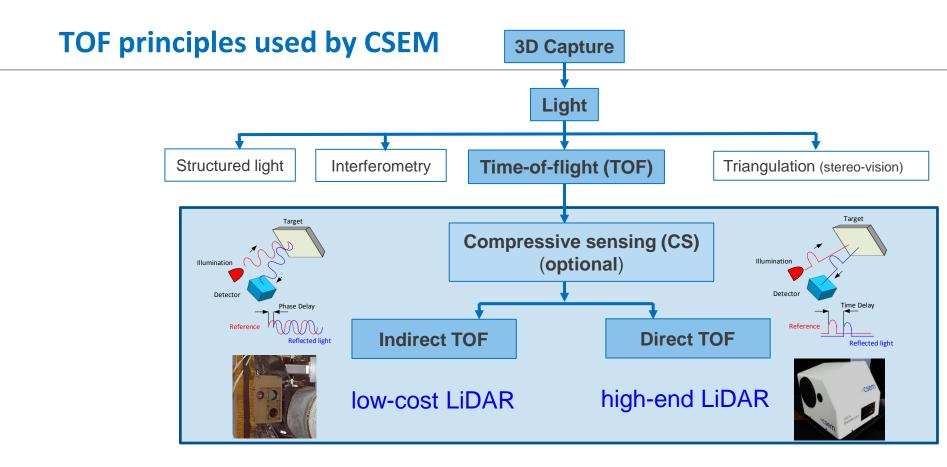
CSEM technology platforms to foster innovation

Most needed expertises for LiDAR

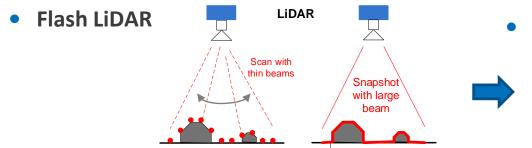
LiDAR development fields

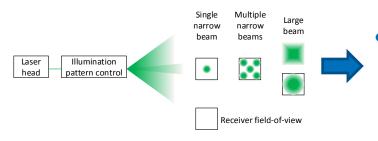
Atmosphere probing (90's to now)


(e.g. aerosols, clouds or ash detection, optical comm. terminals) → airborne LiDAR for Geophysica stratospheric aeroplane


Space (2008-now)

- Landing on celestial object (e.g. Mars sample return mission): high velocities (30-40 m/s), limited on-board processing resources, low and uniform target albedo (Moon 0.07)
 - = Requires state-of-the-art Imaging LiDAR
- **Rendezvous** (e.g. automatic space debris removal): low velocities, processing resources for datafusion, often high target albedo
 - = Relaxed operation constraints \rightarrow lower cost solution
- Diversification with ground applications (now) (e.g. bathymetry, drone/helicopter flying in all-weather, geodesy, etc.)



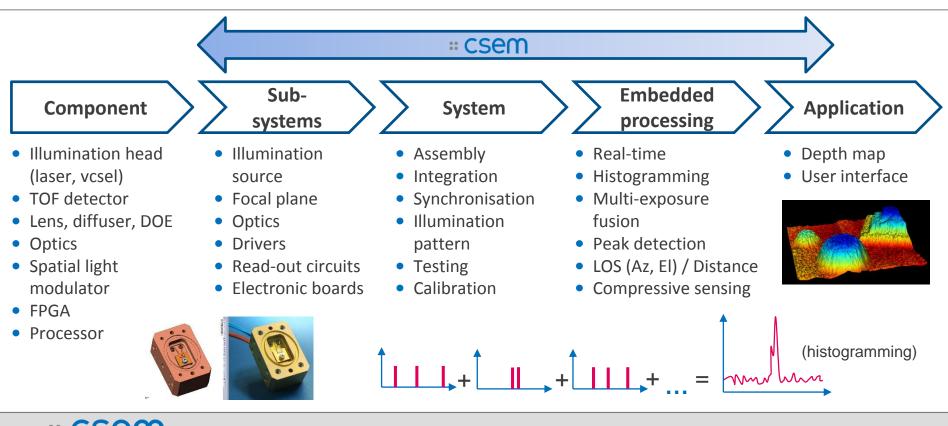

Advocate of Hybrid Flash Imaging LiDAR concept

Design advantages

- 1. Solid-state architecture
- 2. Simplicity (less mechanical parts)
- 3. Robustness (ease micro-vibrations isolation)
- 4. Small form factor (no scanning mechanism)
- 5. Independant from other sensors

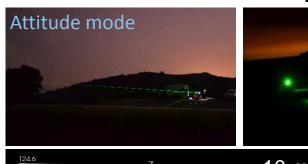
Hybrid → System = 2D TOF detector + illumination pattern control

• One instrument for:

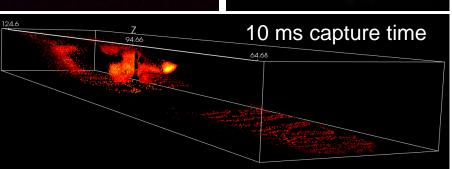

- 1. Single distance/altitude
- 2. Attitude, multiple distances
- 3. 3D imaging

• Adaptation to:

- Range, propagation medium or relative velocity change (e.g. clear sky / fog)
- Instantaneous available data transfer rate and processing bandwidth



LiDAR Value Chain, positioning


High-end flash imaging LiDAR for Mars exploration

- **TRL4 flash imaging LiDAR** delivered in 2017 to **European Space Agency** GNC Rendezvous, Approach and Landing Simulator laboratory (GRALS)
- Features:
 - Single Photon Counting
 - Direct Time-Of-Flight
 - Illumination: 1x or 3x narrow beam, 2°, 4° and 20°
 - Field-of-view: 5.8° 128x128 pixels
 - Altimeter mode: range > 1100 m, accuracy 3 cm
 - Imaging mode: range 300 m (2°), accuracy 3 cm
 - Average electrical power consumption: 39 W
 - Size: 25 cm x 30 cm x 25 cm
 - Mass: 10 kg with power supply and PC
 - Not eye safe at all ranges

Imaging mode

Low-cost flash imaging LiDAR for in-orbit rendezvous

- TRL8 vision-based sensor (flash imaging LiDAR + camera) delivered in 2017 to Surrey Space Technology Lmt. for RemoveDebris mission
- Features:
 - Indirect Time-Of-Flight
 - Illumination/Field-of-view: 15°x 17° 160x120 pixels
 - Imaging mode: range / accuracy
 25 m / < 10 cm 50 m / < 40 cm
 - Average electrical power consumption: 3.6 W
 - Size: 10 cm x 10 cm x 15 cm
 - Mass: 1.8 kg
 - Class 1M 805 nm
 - Operation: -20 to 50°C and resistant to launch vibration

Illumination

LiDAR Receiver

Main PU

VIS camera

Google "RemoveDebris"

Ready for 20th June deployment from ISS air-lock

Conclusion

- CSEM delivered in 2017, TRL4 and TRL8 LiDARs for space applications based on expertise in solid state flash imaging LiDAR
- **Versatility/adaptivity** due to switching/mixing between illumination patterns
- Flash single photon counting architecture features fit largely with the ones sought from an «holy grail» LiDAR, particularly when fast motion/movement in full-scene is present
- Leveraging on experience for space applications, provide innovative solutions for:
 - niche markets (e.g. bathymetry, disabled people aid, all-weather flight, industrial safety), where CSEM can use its standard business model
 - highly competitive markets (e.g. automotive), partnering with OEM or Tier 1 companies is mandatory

Thank you for your attention!

alexandre.pollini@csem.ch

