

SWISS[©]PHOTONICS

Advanced Colorimeter

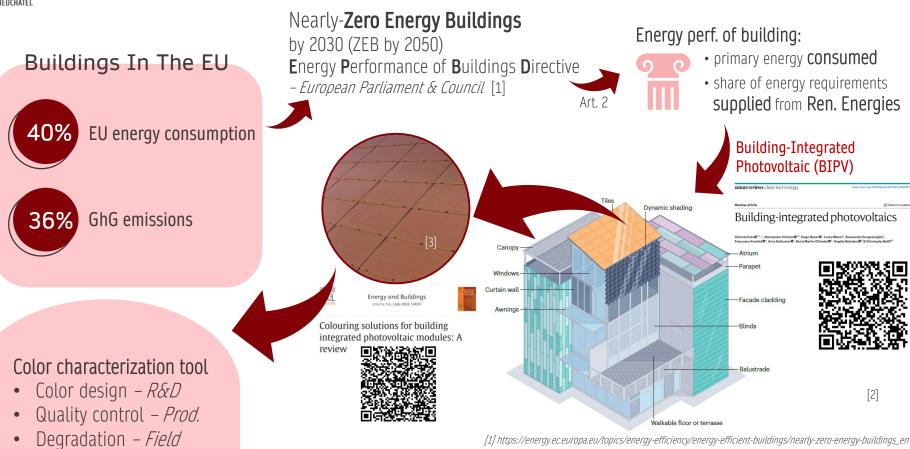
• Construction Glazing & Building-Integrated Photovoltaic (BIPV) •

palexpo

Marie Courtant¹, Elie Flahaut¹, <u>Antonin Faes^{1,2,*}</u>, Raphaël Margueron¹, Nicolas Fürst², Paul Rémondeau¹, Aïcha Hessler-Weyser¹, Fabio Manzini³, Christophe Ballif^{1,2}

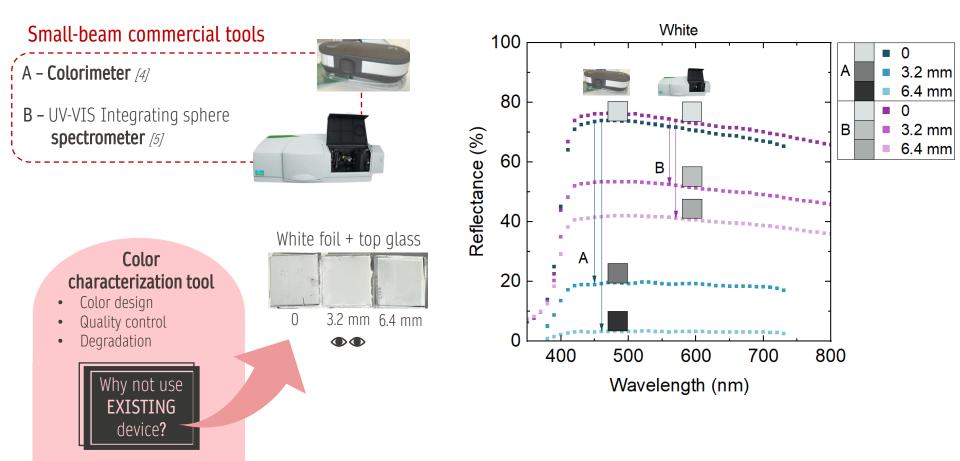
¹ PV-LAB, Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchatel, Switzerland

² CSEM, Sustainable Energy Centre, Neuchatel, Switzerland

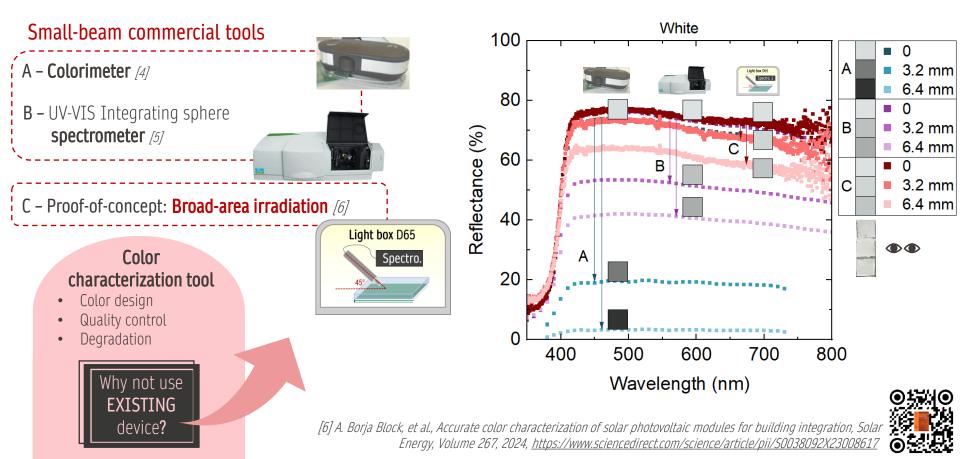

³ GMP, Renens, Switzerland

EPHJ SwissPhotonics June. 5th, 2025

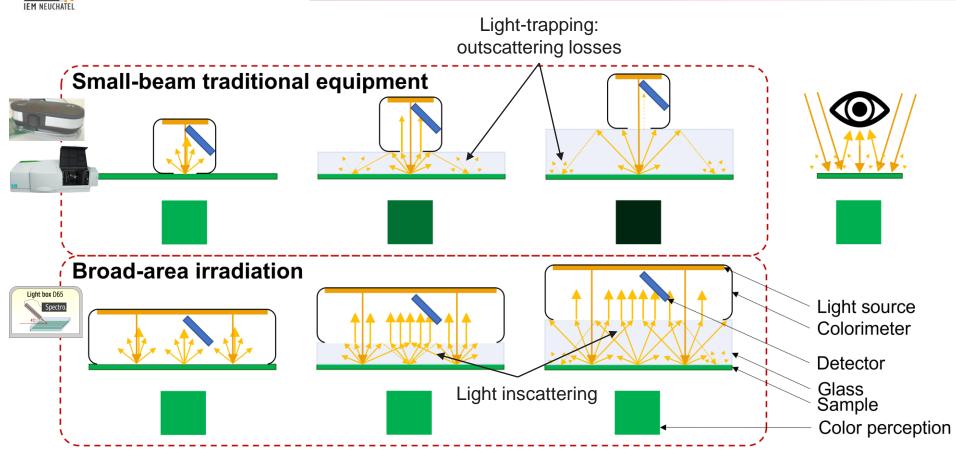
*Contact: antonin.faes@csem.ch


Colorimeter Motivations

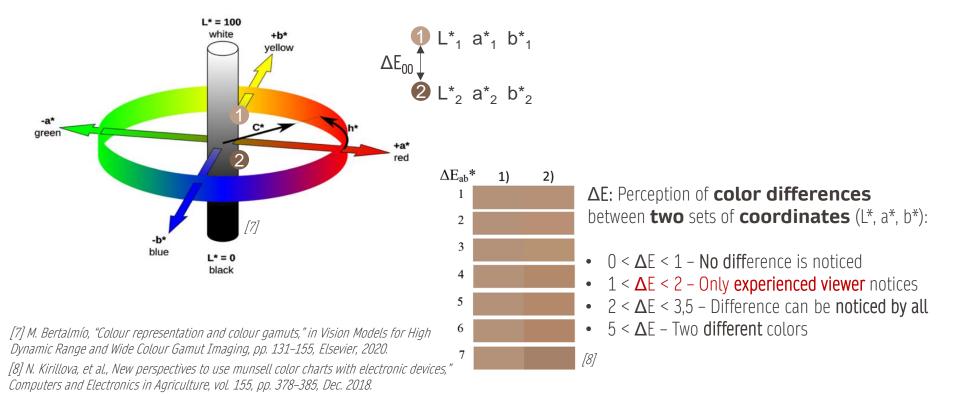
[2] Faes, A., Virtuani, A., Quest, H. et al. Building-integrated photovoltaics. Nat. Rev. Clean Technol. 1, 333–350 (2025). <u>https://doi.org/10.1038/s44359-025-00059-9</u> [3] Borja Block, A. et al. Colouring solutions for building integrated photovoltaic modules: a review. Energy Build. 314, 114253 (2024). <u>https://doi.org/10.1016/i.enbuild.2024.114253</u>



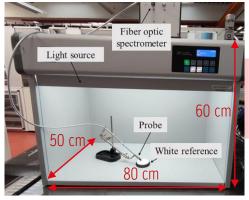
Colorimeter Motivations


Colorimeter Motivations

Colorimeter Measurement artifact: light-trapping

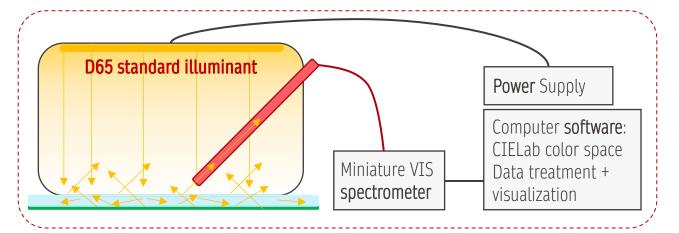

EPFL

PV-lab



CIELAB \rightarrow **3D** color space, most complete (e.g. of other color space = RGB)

Colorimeter Overview / Goal



Proof of concept A.Borja Block, et al., 2024, doi: 10.1016/j.solener.2023.112227

> Limitations:

Huge lightbox (80x60X50 cm3)Large and heavy spectrometer

Goal: Build a **portable Broad-Area Irradiation** (BAI) colorimeter \rightarrow Perception of color difference $\Delta E_{00} < 2$

Colorimeter Expectations – recap.

Solutions IMT NEUCHATEL

Front-End

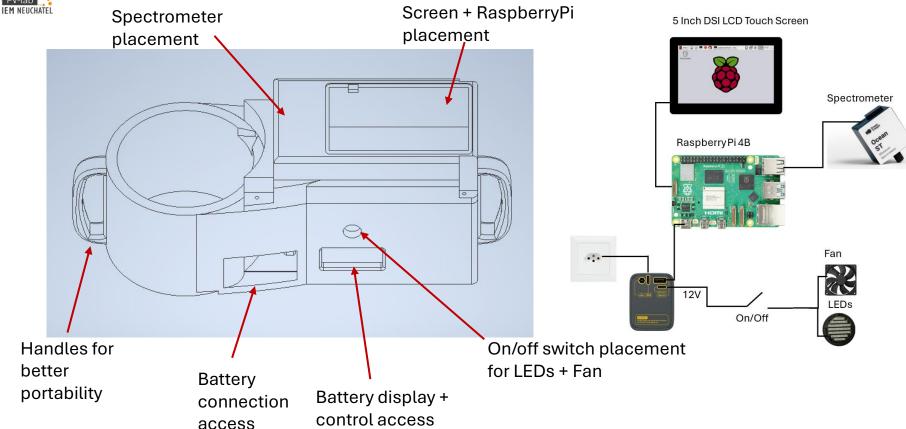
- Small
- Light
- Portable
- User-friendly
- Easy-to-handle
- Easy to move around

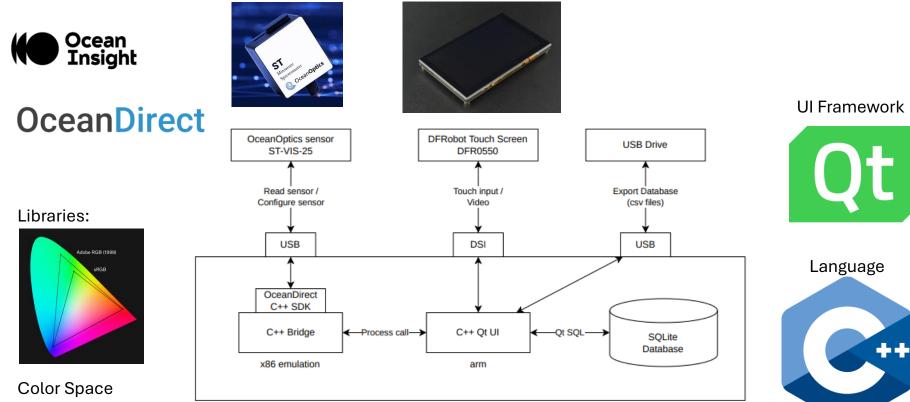
Measures

- Point-measurement
- Broad-area
 illumination
- Light source : D65
 + stable

Main equipment

Spectrometer Compact VIS range High SNR Light Source D65 Compact Stable Long lasting





VIS Microspectrometer

EPFL Colorimeter 1st portable prototype + electrical setup

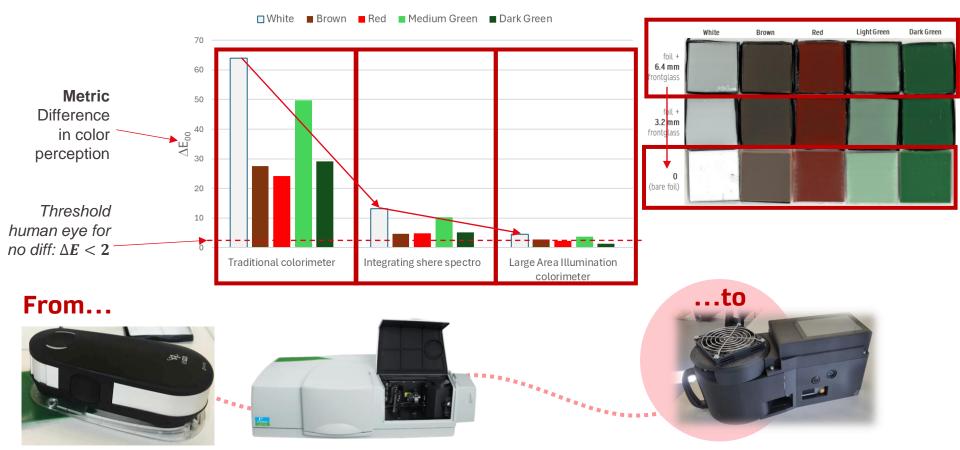
Raspberry Pi 4 Model B

*picture from scanner: difference btw glass and no-glass is greatly enhanced

EPFL

Colorimeter Color samples – Results 3.2 mm Glass

17


3.2 mm

Colorimeter Color samples – Results 6.4 mm Glass

6.4 mm

17

Colorimeter Conclusion / On-going

- Improvements: smaller ΔE closer to 2
- Fully autonomous (battery, integrated software & interface)
- Automatised data treatment calculation of ΔE
- Control of T(°C) thanks to the fan
 - Develop the user interface
 - Improve design ergonomy, weight & size
 - Test on different types of glass (Texture, gloss, pearlescent,...)
 - Non-homogeneous colors
 - BIPV samples impact of metallization, degradation assessment

EPFL Thank you for your attention ! Colorimeter IEM NEUCHATEI Join us for testing on SGMP booth H116!

Funded in part by the European Union and by the Swiss State Secretariat for Education, Research and Innovation (SERI) under grant agreement 101136112 (INCREASE project).

Contact: Antonin Faes antonin.faes@csem.ch

We gratefully acknowledge support from all PV-Lab, CSEM team members and all the institutions that kindly collaborated in this work.

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

~90 peoples at CSEM SEC

~40 peoples at EPFL PV-Lab

Marie

Courtant

Elie Flahaut

Prof. Christophe Fabio Hessler-Wyser Manzini Ballif

[1] https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/nearly-zero-energy-buildings_en

[2] Figure from: HZB Home https://www.helmholtz-berlin.de/projects/baip/bipv_en.html

[3] Building in Zürich, Switzerland, with terracotta foil. 3S Swiss Solar Solutions AG

[4] X-Rite Pro1 Colorimeter

[5] Perkin-Elmer UV-VIS Integrating sphere spectrometer

[6] A. Borja Block, et al., Accurate color characterization of solar photovoltaic modules for building integration, Solar Energy, Volume 267, 2024, https://www.sciencedirect.com/science/article/pii/S0038092X23008617

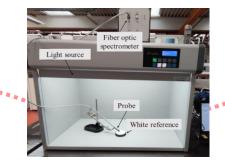
[7] M. Bertalmío, "Colour representation and colour gamuts," in Vision Models for High Dynamic Range and Wide Colour Gamut Imaging, pp. 131–155, Elsevier, 2020.

[8] N. Kirillova, et al., New perspectives to use munsell color charts with electronic devices," Computers and Electronics in Agriculture, vol. 155, pp. 378–385, Dec. 2018.

[9] Data retrieved from I. C. on Illumination (CIE), "CIE standard illuminant a – 1nm and d65."

[10] C. L. M. Costa, R. R. Vieira, R. C. Pereira, L. P. Souza, and A. D. Alvarenga, "Color rendering uncertainties of fluorescent light sources," 2013.

[11] M. Courtant, et al., " Colorimetry of modules for building-integrated photovoltaic applications – Building a broad-area illumination colorimeter", Master's thesis, 2023.


Colorimeter Color samples – Results

EM NEUCHAIEL		Traditional colorimeter		Integrating sphere spectrometer		BAI proof-of-concept		BAI colorimeter	
Metric Difference in color perception Threshold human eye for no diff: ∆E < 2	ΔE_{00}	3.2 mm	6.4 mm	3.2 mm	6.4 mm	3.2 mm	6.4 mm	3.2 mm	6.4 mm
	White	28.83	63.96	7.77	13.03	2.77	6.62	3.64	4.50
	Brown	16.61	27.6	4.3	4.7	5.9	6.78	3.38	2.69
	Red	12.4	24.18	5.06	4.81	2.2	2.95	2.55	2.19
	Medium Green	27.78	49.73	7.26	10.28	3.15	5.18	3.19	3.66
	Dark Green	14.4	29.12	4.05	5.13	2.63	4.38	1.73	1.31

From...

