F H Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences



#### Plasmonic Coloring of Noble Metals by Direct Laser Marking

#### Rainer Kling, Simon Walker, Stefan Remund, Beat Neuenschwander

Institute for Applied Laser, Photonics and Surface Technologies ALPS

## Motivation for Plasmonic Colors

Watches and Silver Coins

(a)

- Metal coloring works on stainless steel, titanium, aluminum
- Oxide layer thickness determines color
- Most laser-colored surfaces are angle-dependent

b

Array of colours by laser colouring on stainless steel. (a) Stainless steel sample at rest position at  $0^{\circ}$ ; (b) stainless steel sample tilted by  $10^{\circ}$ ; (c) stainless steel sample tilt

(C)

Source: Gaidys et al., Optics & Laser Technology 174 (2024) 110561

#### Bern University of Applied Sciences | ALPS





(d)



### Obtainable Color Spectrum in Silver

- The creation metal NPs for surface coloring has attracted considerable interest
- Guay et al results from 2016:
- A: non-burst mode
- B: burst mode
- C: variation of line spacing and hatch
- D: obtainable hue and chroma values



# The burst mode effect on NPs

- First pulse basically ablates material (low to no recast)
- 2<sup>nd</sup> pulse in burst pushes back particle plume to form NPs on surface
- Balance of pulse energy and pulse overlap controls size, embedding and density of NPs on surface
- NPs are a necessary but not sufficient condition for surface coloring



### Setup for trials - Burst Pattern

Creation of metal NPs for surface colourization by picosecond laser pulses
 In burst mode most efficient pattern for colors on silver, gold, etc.





XY Stage

Protocol

> Squares of side length s = 3mm (Ag) and 5mm (Cu) machined with fine variation of spot and line distance  $p_{\chi} = p_{\gamma} = 1 - 20 \ \mu m$ .

 $\triangleright$   $p_{v}$  is also called line distance or line pitch



- We define as overlap O between two pulses:



$$O = 1 - \frac{p_x}{2w_0} \to \frac{p_x}{2w_0} = (1 - 0)$$

For the marking speed follows:  $v_{mark} = f_{rep} \cdot p_x = 2 \cdot w_0 \cdot (1 - 0) \cdot f_{rep}$ 

### Bulk Silver vs electroplated Silver on Brass

#### Bulk Silver sample



#### 50µm electroplated Silver on Brass



#### **Conclusion:** Same Process → Surface quality influences color

### Degradation of Electroplated Ag

#### Sample after Processing

# 1 Week later

### 2 Weeks later



#### Conclusion: Same Process $\rightarrow$ Surface quality influences color degradation

# Color palette extension

- Colors achieved solely through p<sub>y</sub> variation by 0.25µm
- Small change in pulse overlap changes color significantly
- Colors remain stable after 70° ALD coating

#### Parameters

- ▶ p<sub>x</sub> =8µm
- ►  $P_{av} = 0.484W$
- $\blacktriangleright$  N<sub>Layer</sub> =5
- $f_{rep} = 50 kHz$
- $n_{burst} = 3$



## Variation of Fluence and Pitch on Copper

- Double pulses with 25 ns pulse separation provide bright colors
- Small variation in pitch and power provides rich color palette
- Only one layer needed
- Color formation remains stable on copper



## **Conclusions and Lessons Learned**

- Plasmonic colors are generated by a sensitive interplay of ablation, NP agglomeration in the plume, redeposition due to burst mode pulses and melt phase generation for embedding the NPs
- Small variation of pulse overlap changes color significantly
- Copper produces nice structural colors, which don't change with time
- ALD layer important for color preservation and scratch resistance
  Thank you for your attention

Thank you for your attention



