PIC Packaging and Swiss PIC

21/03/2024, Neuchatel

Peter M. Moselund

Photographer: Markus Teller

Why PIC packaging

PICs are useless,

unless they are packaged!

Need for Photonic Integrated Circuit Packaging

Photographer: Markus Teller

Photonic packaging requirements

- Design and implement low loss, reliable interfaces
 - Optical interfacing (fibers, micro-optics etc.)
 - Electronic interfacing
 - Thermal handling
 - Mechanical matching
 - Environmental shielding

PIC Packaging: Optical coupling loss

- 3 main sources of optical loss
 Miss alignment
 - ➢ Mode size and shape mismatch
 - Refractive index mismatch

Mode shape missmatch

KTH Royal Institute of Technology

PIC Packaging: Optical interfaces

- Fiber Waveguide interfaces
 - Grating coupler
 - Enables testing
 - Matches mode size
 - Polarization dependent
 - Narrow band width
 - Significant loss (2-3 dB)
 - Edge coupler
 - Lower loss
 - Wide bandwidth
 - Polarization independent
 - Requires mode matching
 - Alignment critical
 - Difficult testing
 - Other solutions

Appl. Sci. 2020, 10, p. 1538

KTH Royal Institute of Technology

Modefield & alignment tolerance

- Alignment tolerance depends on mode size
 - Typical fiber production tolerance
 - Cladding diameter \pm 0.7 μm
 - Core-clad concentricity $\leq 0.5 \ \mu m$
 - Single fiber placement accuracy
 - ± 0.5 μm

Offset [µm]

2

Axial Missalignment, depending on MFD

- Core position will vary min ± 1.7 µm with passive/cladding alignment
 → Passive alignment of standard fiber can never be better than ≈ 0.5 dB Loss unless the
 - beam is expanded
- But increasing beam increases angle sensitivity

PIC Packaging: two main trends

- Fiber Waveguide interfaces
 - Telecom
 - 1-2 dB loss is acceptable
 - Cost & volume requires passive alignment
 - In-house packaging solutions is the norm
 - R&D focus: New functionality and wafer based alignment methods
 - Scientific e.g. Quantum
 - Low volume, less cost sensitive
 - Low loss < 0.5 dB targets
 - Varying other requirements
 - Active alignment mainly used
 - Packaging primarily outsourced

KTH Royal Institute of Technology

PIC Packaging is complex

Swiss PIC

- AM-TTC center which supports industry with photonic integration services
- Initial financing 2023-2028
- Supported by European leaders e.g. Tyndall, Phix, Ficontec

• Currently commencing operation, initial packaging line fully in place Sept 2024

Facilities etc.

Facility & Staff

- >200 m² Cleanroom under construction, next to PSI cleanroom
- Will employ 8-9 packaging experts

Equipment planned so far

- Fiber attach / Micro assembly machines e.g. ficontec
- Precision die bonder
- Wirebonders
- Optical testing
- Reliability testing

Investing 3 mCHF in 2024 and 1 mCHF annually thereafter in further assembly equipment.

%pic

Swiss PIC technology focus

Die level (not wafer level) packaging in 3 groups:

- Micro-Optical Hybrid Photonic Systems Packaging involving microscale 3D optical elements
- Photonic Integrated Circuits

Packaging centred around one or more planar chip elements

Quantum Photonics Packaging

Utilizes elements of the other groups but targeting the special needs of Quantum tech.

Swiss PIC activities

A) Part of current ion-trap quantum computing set-up at PSI

C) Qubit control through a waveguide array coupled to a fiber bundle

PIC schematic taken from: "Bundalo et al. IEEE J. Select Top. Quant. Electron, vol. 28, 2022"

Support the integration

Be the go-to partner for photonics packaging associated services in Switzerland:

- Feasibility studies
- Package design support (thermal, RF, etc.)
- Environmental testing and qualification
- Development and testing of new packaging technologies
- Rapid prototyping to small volume manufacturing
- Seamless **transfer** to in-house or contract manufacturers

Photographer: Markus Teller

%pic

Target Services

- Packaging design assistance
- Package production
- Equipment training
- Collaborative work model
- Equipment access
- Support for insourcing
- Prototype to pilot series chip level packaging services (1-100 units)

Swiss PIC is open for business

