

# some aspects of Optical Coherence Tomography

### **SSOM Lectures, Engelberg**

17.3.2009

Ch. Meier



# Contents

- 1. OCT basic principles (Time Domain – Frequency Domain)
- 2. Performance and limiting factors
- 3. Mirror ambiguity in FD-OCT
- 4. Dispersion in OCT
- 5. Conclusion

# **Time Domain OCT**

:.....



Michelson Interferometer setup with moving reference mirror



$$TD(z) = r_R^2 + r_s^2 + 2r_R r_s \cos(2k(z_0 - z_1)))$$

# Time Domain OCT

:.....



# Time Domain OCT

•



# **Source Spectrum - Degree of Coherence**



..........

$$l_c = \frac{2ln(2)}{\pi} \frac{\lambda_m^2}{\Delta \lambda}$$

Wiener – Khinchin theorem: The correlation function and the spectrum form a Fourier pair

$$\Gamma(\tau) = \mathfrak{F}^{-1}[S(\nu)]$$

The normalized correlation function is the degree of coherence  $\gamma(\tau)$ . For a gaussian Spectrum

$$|\gamma(z)| = |\gamma(\tau c)| = e^{-4ln(2)\left(\frac{z}{l_c}\right)^2}$$

The coherence length (FWHM)

| Bandwidth | Coherence length |
|-----------|------------------|
| 20 nm     | 14 um            |
| 50 nm     | 5.6um            |
| 150 nm    | 1.9um            |

Ch. Meier 16-03-09

# **Time Domain OCT**

.....



# Resolution

**Lateral resolution** = spot diameter

$$\Delta x = \frac{4\lambda}{\pi} \frac{f}{d} \sim \frac{1}{N_A}$$

Beam diameter  $d\,$  and focal length  $f\,$ 



**Axial resolution** = coherence gate

$$\Delta z = l_c = \frac{2ln(2)}{\pi} \frac{\lambda_m^2}{\Delta \lambda}$$

In OCT Systems axial resolution

- is independent of Numerical Aperture NA !
- depends on source spectrum

Technik und Informatik / Mikrotechnik und Medizintechnik

# **Frequency/Fourier – Domain OCT**

Broadband source coupled to SM fiber

.........

Suppose gaussian Spectrum with bandwidth



 $\Delta\lambda$ 

In wavenumber:





Ch. Meier 17.03.09

Technik und Informatik / Mikrotechnik und Medizintechnik

# **Frequency/Fourier – Domain OCT**

Interferences due to optical path difference

 $OPD = 2k(z_1 - z_0)$ 

Amplitude reflectivities

 $r_R$  ,  $r_s$ 

Frequency in k-space is proportional to OPD



Technik und Informatik / Mikrotechnik und Medizintechnik

# **Frequency/Fourier – Domain OCT**

Interferences due to optical path difference

 $OPD = 2k(z_1 - z_0)$ 

Amplitude reflectivities

 $r_R$  ,  $r_s$ 

Source  $S(\lambda)$ Spectrometer

sample

Frequency in k-space is proportional to OPD

Time domain signal is obtained by a Fourier transformation



**Berner Fachhochschule** Technik und Informatik / Mikrotechnik und Medizintechnik FD OCT, post processing 0.08 0.06 Intensity a.u. Signal after Fourier Transformation 0.04  $TD(z) = \mathfrak{F}^{-1}[FD(k)]$ 0.02  $TD(z) = \mathfrak{F}^{-1}[S(k)] \otimes \mathfrak{F}^{-1}[2r_R r_s cos(2kz)]$ -1000 -800 -600 -400 -200 Ο 200 400 600 800 1000 position in um  $\Delta z = \frac{2\ln(2)\lambda_m^2}{\pi\Delta\lambda} = \frac{4\ln(2)}{\Delta L}$ Axial resolution

The Fourier transformation of a real signal is symmetric.

Only the half measuring range is usable

220

240

180

160

200

position in um

# FD OCT, post processing

Signal power drops for higher OPD due to finite spectrometer resolution.

..........

Scanning range or measuring range

 $z_{max} = \frac{1}{4} \frac{\lambda_m^2}{N\delta\lambda} = \frac{1}{2} \frac{\pi}{\delta k}$ 

 $\delta k$  Spectral resolution

Measurement from home build FD System (12.3.09)





### **Time Domain vs Frequency Domain**

|            | Time Domain                       | Frequency Domain                                                  |
|------------|-----------------------------------|-------------------------------------------------------------------|
| Scan rate  | Slow (< 1kHz)                     | Fast<br>( 50 kHz, >100 kHz with swept<br>source and CMOS cameras) |
| Mechanics  | Mechanical scanning reference arm | no mouvable parts                                                 |
| SNR        | $\sim r_S^2$                      | $\sim r_S^2 rac{N}{2}$                                           |
| Scan range | Limited by reference arm          | Signal power decreases with depth                                 |
|            |                                   | Mirror ambiguity bisect scanning depth                            |

# FD OCT, post processing

. . . . . . . . . . .

The symmetry property of the Fourier Transform can produce image artifacts.

How to overcome the mirror ambiguity in FD-OCT ?

Several systems are proposed to achieve full range FD-OCT



Berner Fachhochschule
Technik und Informatik / Mikrotechnik und Medizintechnik

# Full Range FD-OCT by Phase shifting

Consecutive acquisition of two ore more phase shifted signals

 $FDc(k) = FD1(k) + e^{j\phi}FD2(k)$ 

- Time consuming
- Expensive

#### References

Wojtkowski, .. Optics Letters, 2002 Leitgeb,.. Optics Letters 2003





# Full Range FD-OCT by 3x3 coupler

Parallel acquisition with a 3x3 fiber coupler



Bildquelle: Sarunic 2005

#### References

Sarunic, Optics Express, 2005

# Full Range FD-OCT by heterodyne techniques



#### Reference

Bachmann, Optics Express 2006

Technik und Informatik / Mikrotechnik und Medizintechnik

# Full Range FD-OCT

...........

Phase shift by moving reference mirror over one B-scan

Construction of complex signal by Hilbert Transformation in x direction

#### References

Wang, Applied Physics Letters, 2007



Berner Fachhochschule
Technik und Informatik / Mikrotechnik und Medizintechnik

# Full Range FD-OCT by Dispersion encoding

The dispersion mismatch in the interferometer can be used to

- Improve signal quality
- perform full range FD-OCT



# The algorithm was recently published by B. Hofer, group of W. Drexler, Cardiff.

Bernd Hofer, Boris Pova\v{z}ay, Boris Hermann, Angelika Unterhuber,Gerald Matz, Wolfgang Drexler **Dispersion encoded full range frequency domain optical coherence tomography,** Opt. Express, 2009

Berner Fachhochschule
Technik und Informatik / Mikrotechnik und Medizintechnik

# **Dispersion in OCT**

The propagation constant depend on frequency In a Taylor series expansion we have:

$$e^{j(2\beta(\omega)z-\omega t)}$$

$$\beta(\omega) = \beta(\omega_0) + \frac{d\beta}{d\omega}(\omega - \omega_0) + \frac{1}{2}\frac{d^2\beta}{d\omega^2}(\omega - \omega_0)^2 + \dots$$

The interpretation of the three terms are:

Wave number 
$$k = \beta(\omega_0) = n(\lambda) \frac{2\pi}{\lambda}$$

$$\frac{1}{v_g} = \frac{d\beta}{d\omega} = \frac{1}{c} \left( n - \lambda \frac{dn}{d\lambda} \right)$$

Group velocity

$$D = 2\pi \frac{d^2\beta}{d\omega^2} = \frac{\lambda^3}{c^2} \frac{d^2n}{d\lambda^2}$$

Second Order Dispersion

With c,  $\lambda$  vacuum speed of light and the vacuum wavelength

# **Dispersion in OCT**

..........

The dispersion mismatch is modeled by the element with thickness L , group index ng and second order dispersion D

$$FD(k) \sim \cos\left(\varphi_0 + 2\beta(\omega)z\right)$$
$$FD(k) \sim \cos\left(\varphi_0 + 2(z + n_g L)k + \frac{c^2 LD}{2\pi}k^2 + \dots\right)$$





# **Dispersion mismatch**

Signal without DC term

- one reflecting surface
- Positive Dispersion
- Positive OPD

Phase is determined by Hilbert transformation

- First derivative is prop. to frequency
- Second derivative is prop. to dispersion mismatch



# **Dispersion mismatch**

Signal without DC term

..........

- one reflecting surface
- Positive Dispersion
- Negative OPD



# The sign of OPD = sign of the measured dispersion

Berner Fachhochschule
Technik und Informatik / Mikrotechnik und Medizintechnik

# **Dispersion Compensation**



40 1.st surface 2.nd surface TD Amplitude in dB 30 20 10 0 -10 -20 0.9 0.95 1.05 1.15 0.85 1 1.1 1.2 0.8 z/mm

Dispersion in the interferometer degenerate:

axial resolution

••••••••••

• SNR



Technik und Informatik / Mikrotechnik und Medizintechnik

### **Dispersion Compensation**

The FD-signal is multiplied by a complex phase factor

$$FDc(k) = e^{-j\psi(k)}FD(k)$$

..........

$$\psi(k) = a_2 k^2 + a_3 k^3 + \dots$$

The factors a2, a3, ... are determined by the second derivative of the phase function.



$$FD(k) \propto \cos\left(\varphi_0 + 2(z + n_g L)k + \left(\frac{c^2 L D}{2\pi}\right)k^2 + ....\right)$$

Technik und Informatik / Mikrotechnik und Medizintechnik

# **Dispersion Compensation**

Signal before and after dispersion compensation

..........

Dispersion of 25 mm glass in sample arm

SNR improvement 8 dB

Axial resolution improvement factor 4.6

FWHM = 9 um compensated = 44 um uncompensated



**Berner Fachhochschule** Technik und Informatik / Mikrotechnik und Medizintechnik ...........

Intensity Graph

# **Dispersion encoded Full Range**

The dispersion mismatch is used to identify the sign of OPD

-2

-1

Z axis / mm 0

1

х



X axis /mm

Technik und Informatik / Mikrotechnik und Medizintechnik



...........



29 / 34

Technik und Informatik / Mikrotechnik und Medizintechnik



•



Technik und Informatik / Mikrotechnik und Medizintechnik



\*



Technik und Informatik / Mikrotechnik und Medizintechnik



•





# **Application of DeFR in actual project**

- High measurement range z<sub>range</sub> > 6 mm
- Resolution dz = 10 um
- A-scan rate > 100 Hz

#### The challenges are:

- Compact module
- Large measuring range
- Low manufacturing cost





### Conclusion

- Removal of the mirror ambiguity in FD-OCT is a issue
- Dispersion handling enables signal enhancement and full range FD-OCT
- Dispersion handling is software based, don't need expensive and time consuming hardware
- FD-OCT with low-cost elements is feasible

#### Thank you for your attention