

Ultrashort pulse laser processing – current industrial applications and beyond

Stefan Nolte

Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Str. 15, 07745 Jena, Germany

Center for Innovation Competence Ultra Optics

Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Str. 7, 07745 Jena, Germany

Prof. Dr. Stefan Nolte

Phone: +49(3641) 9-47820 www.iap.uni-jena.de

Micromachining of metals

- "long" pulses (3.3 ns)
- melting and creation of burr
- heat diffusion
- non reproducible process

B.N. Chichkov, C. Momma, S. Nolte, F. v. Alvensleben, A. Tünnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids", Appl. Phys. A **63**, 109 – 115 (1996)

ultrashort pulses (200 fs)

- practically burr- and melting-free ablation
- low ablation threshold
- negligible heat diffusion
 → minimized heat affected zones
- high process efficiency
- stable ablation process
 - \rightarrow high reproducibility

Institute of Applied Physics Friedrich-Schiller-Universität Jena

Drilling of injection nozzles in series production

Images: BOSCH

up to 20% less fuel consumption

DEUTSCHER ZUKUNFTSPREIS Preis des Bundespräsidenten für Technik und Innovation

fs laser induced structural changes in glasses

Institute of Applied Physics Friedrich-Schiller-Universität Jena

K. Itoh, W. Watanabe, S. Nolte, C.B. Schaffer, MRS Bulletin 31, 620, (2006)

fs laser induced structural changes in glasses

Institute of Applied Physics Friedrich-Schiller-Universität Jena 5

K. Itoh, W. Watanabe, S. Nolte, C.B. Schaffer, MRS Bulletin 31, 620 (2006)

Nanograting period – local artifical birefringence

Grid pattern wave plate

Transmission measurement with rotating polarizer

Application example: structured illumination microscopy

fs laser induced structural changes in glasses

Institute of Applied Physics Friedrich-Schiller-Universität Jena

K. Itoh, W. Watanabe, S. Nolte, C.B. Schaffer, MRS Bulletin 31, 620 (2006)

Laser cutting of hardened glass

Volume modification as breaking layer

- Process speed
- Wide range of transparent material
- Debris free

Challenging tasks

- Controlled breaking
- Quality (break strength & edge)
- Color centers
- Stress fields and complex contours

Initiation process and development in Corning® Gorilla® Glass, NA 0.35, 200µJ

Institute of Applied Physics Friedrich-Schiller-Universität Jena 10

Plasma development for pulse duration < 1ps

¹A. Couairon, A. Mysyrowicz, Phys. Reports 441, 47– 189 (2007) ²S. Mao, et al., Appli Phys. A 79(7), 1695–1709 (2004) ³G. Méchain, et al., Phys. Rev. Lett. 93, 035003 (2004)

Plasma development for pulse duration > 5ps

⁴Y. P. Raizer, Soviet Phys. Uspekhi 8(5), 650 (1966)
⁵F. Docchio, et al, Appl. Opt. 27(17), 3661–3668 (1988)
⁶D. X. Hammer, et al., Appl. Opt. 36(22), 5630–5640 (1997)

- $P \approx 300 \times P_{cr}$ 'Multi-filament regime'¹
- Beam breaks up into single filaments¹⁻³
- In focus: $n_e \approx 2.0 \times 10^{19} {\rm cm}^{-3}$
- Off focus: $n_e < 2.0 \times 10^{18} {\rm cm}^{-3}$
- Interaction area ≈ 1mm

- Plasma ignition in focal area
- 'Moving breakdown'⁴⁻⁶ towards incoming beam
- In focus: $n_e \approx 1.0 \times 10^{20} {\rm cm}^{-3}$
- Off focus: $n_e \approx 5.0 \times 10^{19} \mathrm{cm}^{-3}$
- Interaction area ≈ 250µm

Improved Laser cutting of hardened glass

nhofer

Improved laser cutting of unhardened and functionalized glass

Friedrich-Schiller-Universität Jena

IOF

Laser Bonding

Institute of Applied Physics Friedrich-Schiller-Universität Jena

Institute of Applied Physics Friedrich-Schiller-Universität Jena

Local melting by heat accumulation

Time interval between pulses < Time for thermal relaxation ca. 1 µs at MHz pulse repetition rate ≈ 1 µs

Temperature evolution

(simulation at 2 µm distance from laser focus)

S. Richter, S. Döring et al., Proc. of SPIE 8244, 824402 (2011)

Laser Bonding Procedure

15

IOF

(1) Optical Contacting

(2) Adjustment of laser focus

(3) Laser bonding process

 typical weld seam:

S. Richter, S. Döring et al., Appl. Phys. A 103, 257–261 (2011)

Characterization of the Bond Quality

Institute of Applied Physics Friedrich-Schiller-Universität Jena

Preparation of rectangular rods

3-Point-Bending-Test

 \rightarrow Measurement of the breaking strength σ

$$S = \frac{3F_{\text{max}}I}{2bh^2}$$

S. Richter, S. Döring et al., Appl. Phys. A 103, 257–261, 2011

Bonding of Different Glass Types

Institute of Applied Physics Friedrich-Schiller-Universität Jena

S. Richter, S. Döring et al., Appl. Phys. A 110, 9–15 (2013)

IOF

濍 Fraunhofer

17

Welding without optical contacting

thick samples
"just put together"
→ no pressure
→ no contact

translation velocity: 10 mm/s

Welding results:

Three point bending test

→ 85% of pristine bulk material without optical contacting

- encapsulation of optical components
- special bond-geometries without influence on functional areas
- stable joining of optical components without interface layer
- realization of gas-proof bonding

Many thanks to all colleagues, partners and for financial support

Bundesministerium für Bildung und Forschung

ung

Thüringer Ministerium für Bildung, Wissenschaft und Kultur

Ultrashort pulse laser processing

Institute of Applied Physics Friedrich-Schiller-Universität Jena 22

micromachining

nanogratings artificial birefringence

fiber / volume Bragg gratings

medicine

ultrashort pulse laser welding

