

Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences

Ultra Short Laser Pulses: A Versatile Tool for Applications in Watch Industry and Jewelry

T. Kramer, B. Jäggi, St. Remund, M. Schmid, B. Neuenschwander

Bern University of Applied Sciences / Institute for Applied Laser, Photonics and Surface Technologies

Motivation

3D Shark Skin Structure

Bern University of Applied Sciences | Institute for Applied Laser, Photonics and Surface Technologies

Optimization Tasks

Efficiency:

0.15

dV/dt/P_{av} / mm³/min/W

0 0

Bern University of Applied Sciences | Institute for Applied Laser, Photonics and Surface Technologies

State of the Art: Ablation model Gaussian Beam

Specific removal rate [1]:

 Shorter Pulses -> higher removal rates

[1]: B. Neuenschwander et al, "From fs to subns: Dependence of the Material Removal Rate on the Pulse Duration for Metals", Physics Procedia Vol. 41, pp. 787-794 (2013)

Bern University of Applied Sciences | Institute for Applied Laser, Photonics and Surface Technologies

State of the Art: Ablation model Gaussian Beam

- - Brass: $\Delta \tau = 10 \text{ ps}, w_0 = 16 \mu \text{m}$ > Silver: $\Delta \tau = 10 \text{ ps}, w_0 = 16 \mu \text{m}$ > Gold: $\Delta \tau = 10 \text{ ps}, w_0 = 16 \mu \text{m}$

Bern University of Applied Sciences | Institute for Applied Laser, Photonics and Surface Technologies

Influence of the Pulse Duration

- Shorter pulses lead to higher spec. removal rates
- Gain depends on the material
- Strong drop between 3ps and 50ps
- Mainly caused by change of energy penetration depth
- Low rates for pulse durations between 50ps and 4ns

Optimization Tasks

Efficiency:

Strategy:

Throughput:

Bern University of Applied Sciences | Institute for Applied Laser, Photonics and Surface Technologies

Introduction

Conventional Processing

- 2.5D / 3D structure is sliced
- generation of layers
- typical layer thickness 0.1 μm

Each layer is filled with hatch pattern

Standard Modes

Standard approach, start at the boundary of the structure

- «Acceleration problem»
- Deep marking at the border
- Well defined border
- Steep walls

Standard Modes

Standard approach, start at the boundary of the structure

- No deep marking
- Diffuse border
- Less steep walls

Bern University of Applied Sciences | Institute for Applied Laser, Photonics and Surface Technologies

Standard Modes

Standard approach, start at the boundary of the structure

Fully synchronized Galvo-Scanner Set - Up

Bern University of Applied Sciences | Institute for Applied Laser, Photonics and Surface Technologies

Fully Synchronized Scanning: Unidirectional Scanning

- Equal starting points in x-direction
- Matrix pattern

- Systematic change in x-direction
- Regular pattern
 - e.g. densest sphere packing

Application 1: Multipulse Drilling on the Fly

- Repetition rate f_{rep} 0.2 MHz
- Average Power P_{ave} 1.8 W
- Pitch:
- Scan speed v_{scan} 8.0 m/s
- Picture size 250 x 250 pixel

40.0 µm

900

Repeats

- Each whole corresponds to a pixel with laser on
- No coloring or deformation of the foil due to heat accumulation

Application 2: Machining of Grey-Scale Bitmaps

http://brettworks.com/2012/04/26/on-themusicality-of-m-c-escher/

Bern University of Applied Sciences | Institute for Applied Laser, Photonics and Surface Technologies

Application 3: 3D Surface Structuring

Structuring of Steel 1.4301

Pyramids in Copper

Shark Skin Structure in Copper

Bern University of Applied Sciences | Institute for Applied Laser, Photonics and Surface Technologies

Application 4: Coloring and Polishing

Bern University of Applied Sciences | Institute for Applied Laser, Photonics and Surface Technologies

Application 5: De-Coating

Removed Chromium Layer

Detail

Detail (negative pattern)

Bern University of Applied Sciences | Institute for Applied Laser, Photonics and Surface Technologies

Limits with Galvo Scanner

Marking with full Synchronization, start always at the border of the structure

Todays speed limit given by the galvo scanner

- 60 m/s with $w_0 \approx 35 \, \mu m$ (255mm objective)
- 40 m/s with $w_0 \approx 22 \, \mu m$ (160mm objective)
- 25 m/s with $w_0 \approx 14 \, \mu m$ (100mm objective)

Technical limit, hard to improve

Optimum speed also depends on the line length

Future Steps

Optimization Tasks

Efficiency:

Strategy:

Throughput:

Bern University of Applied Sciences | Institute for Applied Laser, Photonics and Surface Technologies

Scale-Up: Technologies

Fast Rotating Cylinders

AO- or EO- Deflectors

Polygon Line Scanner

[3] S. Brüning, G.Hennig, S. Eiffel, A.Gillner; Proc. LIM 2011, Physics Procedia, Elsevier (2011) [4] B. Jäggi et al., "High Throughput and High Precision Laser micromachining with ps-Pulses in Synchronized Mode with a fast Polygon Line Scanner", SPIE 8967-25 (2014)

Bern University of Applied Sciences | Institute for Applied Laser, Photonics and Surface Technologies

Polygon: Line Scanner for Scale-Up of Steel 1.4301

- ► *f_{rep}*: 4.1MHz
- ► *P_{av}*: 25.6W
- ► $p=14.5\mu m \rightarrow v_{scan}$: 59.5m/s
- No. of Layers: 2233
- Is a further scale up above the 100W regime possible?

- Equal for f = 8.1MHz and 10MHz (shorter pulses -> higher rates)
- Drop of about 15% for 40MHz

- Equal for f = 8.1MHz and 10MHz (shorter pulses -> higher rates)
- Drop of about 15% for 40MHz

Bern University of Applied Sciences | Institute for Applied Laser, Photonics and Surface Technologies

- Equal for f = 8.1MHz and 10MHz (shorter pulses -> higher rates)
- Drop of about 15% for 40MHz
- Bumpy surface for f = 10MHz

- Equal for f = 8.1MHz and 10MHz (shorter pulses -> higher rates)
- Drop of about 15% for 40MHz
 - 10 µm
 EHT = 10.00 kV WD = 7.1 mm
 Signal A = SE2 Mag = 4.00 K X
 Date :15 Oct 2015 Reference Mag = Out Dev.
 BFH_TI Josef Zürcher
- More pronounced for f = 40MHz

Bern University of Applied Sciences | Institute for Applied Laser, Photonics and Surface Technologies

- Equal for f = 8.1MHz and 10MHz (shorter pulses -> higher rates)
- Drop of about 15% for 40MHz
- More pronounced for f = 40MHz
- Bumpy surface are caused by heat accumulation [5]

[5] F. Bauer et al., " Heat accumulation in ultrashort pulsed laser processing of metals", Opt. Expr., 23, 1035 - 1043 (2015)

Copper and Brass: Influence of the Repetition Rate

 For a fixed overlap a strong decrease of the specific removal rate is observed for higher repetition rates

Copper and Brass: Influence of the Repetition Rate

- For a fixed overlap a strong decrease of the specific removal rate is observed for higher repetition rates
- Drop already from 2 MHz
- Similar behavior for brass
- Particle/Plasma Shielding

Copper and Brass: Surface Quality at high Average Powers

- Copper @ 5 MHz
 - Quite good surface quality at highest peak fluence

$$\frac{dV}{dt} \approx 40 \frac{mm^3}{min}$$

Copper and Brass: Surface Quality at high Average Powers

- Copper @ 5 MHz
 - Quite good surface quality at highest peak fluence

$$\frac{dV}{dt} \approx 40 \, \frac{mm^3}{min}$$

- Brass @ 5 MHz:
 - Good Surface Quality

$$\frac{dV}{dt} \approx 41 \frac{mm^3}{min}$$

Cavities due to lead inclusions?

Copper and Brass: Surface Quality at high Average Powers

- Copper @ 5 MHz
 - Quite good surface quality at highest peak fluence

$$\frac{dV}{dt} \approx 40 \frac{mm^3}{min}$$

- Brass @ 5 MHz:
 - Good Surface Quality
 - $\quad \frac{dV}{dt} \approx 41 \frac{mm^3}{min}$
 - Cavities due to lead inclusions?
- Brass @ 10 MHz:
 - Surface quality improved

$$\frac{dV}{dt} \approx 40 \frac{mm^3}{min}$$

Conclusion / Outlook

- Metals show an optimum fluence going with highest efficiency i.e. spec. removal rate
- Its value depends on the pulse duration. In general shorter pulses are advantageous
- Synchronization is a key factor for precise and fast micromachining
- Marking speeds up to 40m/s with high end galvo scanner by maintaining the high precision demonstrated
- Power scale up into the 300 W regime was demonstrated
 - Heat accumulation represents a serious issue for steel
 - Shielding appears even for "low" repetition rates of 2MHz
 - Both effects can be reduced by higher marking speed
 - Copper / brass could be machined with good surface quality and removal rates of about 40mm³/min

Conclusion / Outlook

v_{mark} > 1000 m/s, f_{rep} > 20 MHz, synchronized ???

Bern University of Applied Sciences | Institute for Applied Laser, Photonics and Surface Technologies

Conclusion / Outlook

Steel 300W

New strategies needed and under development

Bern University of Applied Sciences | Institute for Applied Laser, Photonics and Surface Technologies

Acknowledgement

- Special Thanks to Stefan Barcikowsi and his group from University Duisburg Essen for giving us the opportunity to work with their high power laser system
- The presented work was partially supported by the Swiss Commission for Technology and Innovation CTI

R&D Funding, KTT Support

Acknowledgement

Booth E126

Bern University of Applied Sciences | Institute for Applied Laser, Photonics and Surface Technologies