Basics of ultrashort pulse laser micro-drilling

Andreas Michalowski

Rudolf Weber

Thomas Graf

Further questions?

michalowski@ifsw.uni-stuttgart.de

UNIVERSITÄT STUTTGART INSTITUT FÜR STRAHLWERKZEUGE

STUTTGART LASER TECHNOLOGIES

Outline

- Applications of micro holes
- Interaction of light and metals
- Interaction of light and ambient atmosphere
- Diagnostics of the process
- Percussion and helical drilling
- Optical concepts for helical drilling

Example: Drilling of injection nozzles

Drilling of turbine blades

(Source: Daimler, Stuttgarter Lasertage 99)

Focussing of light (paraxial approximation)

Theoretical ablation diameter

$$d_f = 15 \ \mu m$$
 $\lambda = 1064 \ nm$ $F_{thr} = 0.2 \ J/cm^2$

Why is the drilling channel narrow and deep and the "isophotes" not?

Absorption at metal surface

Optical and thermal penetration depth

For metals: thermal penetration depth >> optical penetration depth.

2-temperature model

- Aluminium τ_{ep} = 4.27 ps, Iron τ_{ep} = 3.5 ps, Copper τ_{ep} = 57.5 ps
- Evaporation time, max. melt thickness and solidification time converges to minimum value > 0

Theoretical results

- For higher fluences (compared to ablation threshold)
 The ablation depth per pulse increases strongly with pulse duration
- For fluences near the threshold
 The ablation can be more efficient for shorter pulse durations
- The melt thickness does not tend to zero if pulse duration tends to zero
 - → Electron-phonon relaxation τ_{ep} defines lower limit
 - → A further decrease of pulse duration far below τ_{ep} not advantageous

Ablation threshold

(Source: Gamaly et. al, Physics of Plasmas Vol. 9, No. 3, 2002, pp. 949) (SSOM Engelberg Lectures 19.3.09)

Interaction with ambient atmosphere

Air breakdown: Time resolved interferometric observation

(Source: Garnov et. al, Laser Physics Vol. 13, No. 3, 2003, pp.386)

Air breakdown: Time resolved interferometric observation

- Expanding velocity of the plasma bulb during the pulse 6*10⁷ cm/s
 Strong laser-plasma interaction
- Expanding speed decreases after the pulse
 - ➔ free expansion

^{Folie 14} (Source: Garnov et. al, Laser Physics Vol. 13, No. 3, 2003, pp.386)

Air breakdown: electron density

^{Folie 15} (Source: Garnov et. al, Laser Physics Vol. 13, No. 3, 2003, pp.386)

Air breakdown at diffent pulse durations

Linear polarized Circular polarized 80 J/cm² 7×10¹³ W/cm² 7×10¹³ W/cm² 80 J/cm² -lens conical emission 100 mm ≙ 9° screen 260 J/cm² 2.4×10¹⁴ W/cm² 260 J/cm² 2.4×10¹⁴ W/cm² Ursprünglicher Strahldurchmesser

Implifications of ionization of the ambient gas

- Conical emission starts in from of the focal plane
- Intensity dependence evident
- The pulse energy is partly "scattered" into an increased solid angle

^{Folie 17} (Source: Klimentov et. al, Breitling et. al., Proc. of LAT2002)

Practical implifications of conical emission

 $\lambda = 800 \text{ nm}$ $\tau = 130 \text{ fs}$ F = 80 J/cm²

- Ablation outside the "normal" ablation diameter
- The scattered power due to conical emission reduces precision at high fluences

Particles as sources for plasma

(Source: Klimentov et. al, Physics of wave phenomena, Vol. 15 No. 1, pp. 1-11, 2007) rg Lectures 19.3.09)

Absorption inside particle generated plasma

- Transmission through channel depends on repetition rate
 particle-ignited plasma absorbs
- Transmitted energy independent from source energy

→ The higher the intensity the stronger the plasma absorption

Absorption inside particle generated plasma

(Source: Klimentov et. al, Physics of wave phenomina, Vol. 15 No. 1, pp. 1-11, 2007) erg Lectures 19.3.09)

Temporal beam shaping to improve drilling speed

(Source: Wang, Michalowski et. al., Optics&Laser Tech. Vol. 41, pp. 148-152, 2009) Iberg Lectures 19.3.09)

Temporal beam shaping to improve drilling speed

- Nanosecond pulse was devided into double pulse
- A shock wave appears due to the first pulse
- Inside the shock wave the gas density is low
- The number of pulses for drilling through is reduced significantly using double pulses even at low repetition rate
- At vacuum conditions the effect is much less pronounced

➔ "Double pulse effect" has to do with plasma avoidance

(Source: Wang, Michalowski et. al., Optics&Laser Tech. Vol. 41, pp. 148-152, 2009)

Processes which occur because of laser ablation (metals)

- The pulse energy is coupled to the electrons inside the metal
- The electrons thermalize with the lattice
- The temperature increases rapidly (< 1ns)
- The material melts and partially evaporates nearly instantaneous
- Shock waves, an evaporation plasma, an evaporation plume, droplets and melt expulsion are generated

Types of plasma for laser drilling

Drilling strategies

Post process diagnostics of melt transport: burr formation

Helical drilling

- Scaling down focal diameter
 → Reduction of burr
- Simple energy strategy further reduces burr

Smaller focal diameter

+ simple strategy

(helical drilling)

In process diagnostics: burr formation

In process diagnostics: droplet ejection

Experiment

- Time resolved high speed filming for droplet tracing
- Frame rate 2 MHz

Observation

- Burr formation stops
 Droplet ejection continues
- Big droplets observed for deeper drilling channel

Question: Where are droplets generated?

340 µm

In process diagnostics: droplet ejection

Observation

- Droplet traces can be visualized
- Most droplets in surface normal direction
- Droplet velocity (v_z) unchanged during observation
- Droplet origin deep inside the channel

Estimation of droplet origin

Estimation of droplet origin

- Melt film: Limited flow distance
- In upper region droplet release
- Droplet speed \approx 80 m/s

Droplets rotate and break → still liquid phase

Surface tension evident → liquid phase

Cylindricity: Influence of polarisation and beam profile

- Polarization has effect on hole shape
- Circular or rotated polarization improves geometry
- Nevertheless because of a not rotational symmetric beam profile the hole will not become cylindric

Helical Drilling Optics with rotation wedges

 To control the inclination angle and the diameter of the helical drilling path the wedge distance and relative rotation angle is adjusted during operation.

Coming soon: New helical drilling optics

Summary

- Because of the fresnel equations and because the light hits the wall at an effective angle of incidence close to 90°
 - →The drilling channel results with "parallel" walls
- Pulses shorter than the electron-phonon relaxation time of the metal do not further improve the quality.
- At high intensities (~10¹³ W/cm²) an air breakdown occurs.
 - →This plasma absorbs light.
 - \rightarrow Conical emission occurs which reduces the precision.
- Particles in the ambient air (and inside the channel) decrease the threshold for breakdown.
- Double pulses can increase the ablation rate. The mean effect is the avoidance of particle ignited atmosperic plasma.
- The burr occurs only during the first stage of drilling and originates from the expulsion of a melt film. Later on melt expulsion from the hole consists of liquid droplets.

Summary

- The hole cylindricity is improved by using radial symmetric polarization.
- The intensity distribution has also an effect to the cylindricity.
 - → Using a poor beam, not only the position but also the profil must be rotated.
- A new concept of a helical drilling optics was presented.

Some solutions to avoid unwanted plasma effects during drilling:

- Usage of shorter wavelength, because plasma absorption ~ λ² (Demonstrated experimentally at the IFSW/FGSW)
- Decreasing of air density (e.g. IFSW-aerodynamic window)
- Using processing gases with high ionization threshold (e.g. helium) (Demonstrated experimentally at the IFSW)

Thank you for your interest!

