DIGITAL PHOTONIC PRODUCTION

Fertigungstechnisches Seminar der ETH Zürich "Ultrafast Lasers – Technologies and Applications"

Prof. Dr. Reinhart Poprawe, Aachen

Who we are ...

Facts and Figures of Fraunhofer ILT and RWTH Aachen University LLT, TOS, NLD

- About € 31 Mio operating budget (without investments)
- About € 4 Mio investments per year
- More than 250 current projects for industrial partners per year
- App. 400 @ ILT, 150 @ 3 RWTH-Chairs, 200 @ App-Center
- DQS certified according to DIN EN ISO 9001
- 2 branches abroad:
 - Center for Laser Technology CLT
 - Coopération Laser Franco-Allemande CLFA
- One patent application per month on average
- 30 Spin offs in the last 25 years

Outline and Questions

- Limits of present productions Technology: The Dilemmas
- What is Digital Photonic Production and why is it widely developing?
- 3 pictures on the fundamentals
- Applications
 - Surface
 - Volume exposure
 - Volume ablation
 - System Development
- Diode Laser Technology will decide global leadership

What we want ...

"Fraunhofer Gesellschaft Z punkt.-Lebenswelten 2015 plus", "Siemens-Horizons 2020"

Dilemata in Present Production Technology

The Research Objective of Production Technology: Resolution of the Polylemma of Production

Vision of Integrative Production Technology

The Research Objective of Production Technology at the Beginning of the 21st Century

The Research Objective of Production Technology at the Beginning of the 21st Century

What we have ...

Digital Photonic Production – "Bits to Photons to Atoms"

Using light as a tool means ...

- highest power density
- highest speed
- shortest interaction (precision)
- mass-less, force-less, no mechanical tools

Digital Photonic Production – "Production 2.0"

Photonic Production – Growing Fields of Application

Ultrafast Precision Meets High Power

Motivation

High precision and high throughput manufacturing of various materials and products

Multi-component materials and multilayer systems

Friction reduction and functionalized surfaces

Integrated optics, semiconductor technology

Life science and medicine technology

→ Ultrashort pulse laser radiation with high average power

Physical Basics

© Fraunhofer ILT

Time Scales of Thermal Processes

Thermal Penetration Depth and Melt Film Thickness

Material	Optical penetration depth α^{-1} [mm]			$\begin{bmatrix} 10^{-3} \\ & 10^{-4} \end{bmatrix}$
	Excimer Laser	Nd:YAG Laser	CO ₂ Laser	$\delta_{th} = \sqrt{4\kappa t}$ Steel 10^{-6} 10^{-6} 10^{-7} 10^{-8} 10^{-9} $0ptical penetration depth$ 10^{-10} 10^{-10} 10^{-15} 10^{-12} 10^{-9} 10^{-6} 10^{-3}
Metal	10 ⁻⁵	< 10 ⁻⁵	10 ⁻⁶	
Glass	> 10 ⁻⁴	> 100	> 0.1	
Ceramic	5·10 ⁻⁵ -0.02	> 0.001	0.001	
Polymer	10 ⁻⁵ -10 ⁻²	> 10 ⁻⁵	10 ⁻³ -10 ⁻²	Pulse duration τ [s]

/

$$T(z,t) - T_0 = \frac{I_{abs}}{\sqrt{\lambda \rho c}} \sqrt{t} \; 2 \, ierfc \left(\frac{z}{\delta_{th}(t)}\right)$$

Heat Diffusion

High Intensity, short pulse duration

 \rightarrow Small heat affected zone, no recast

XRD-spectra at the ablation ground for different pulse durations

- Melt temperature $T_M = 265^{\circ}C$
- Estimated penetration depth below 1 µm

Basics

Materials

Steel

- Injection molding tools
- Forming tools
- Tribological structures

Ceramics

- Ceramic-Substrates for printed circuit boards
- Ceramic micro components
- PCD- and Sapphire-Tools

Polymers

- Medical technology
- Micro fluidics
- Micro optics

Markets and Applications

Application Markets

Surface Ablation by Ultrafast Lasers

Functional Surfaces

Laser Structuring of Motor Components

- Aim: reduction of friction and wear
- Structures act as oil reservoir and a hydrodynamic bearing
- Compromise between efficiency and oil consumption

Functional Surfaces

Laser Structuring of Motor Components

- Inserting of micro structures by ps laser ablation
 - No further treatment necessary
 - No thermal degradation of the adjoined material
- Applications in automotive industry under development
 - Piston rings
 - Cylinders
 - Sealing rings
 - Piston pumps

Functional Surfaces Surface Roughening

Cone-like-protrusions (CLPs)

- Statistical structure effect that occurs by redistribution of melt during ablation with ultrashort laser pulses
- Structure sizes: 6-10µm

Nano ripples

- Overlay of nanostructures
- Structure size: ~1µm

Functional Surfaces Surface Roughening

- Ablation of 10-30 layers with high laser intensity
- Generation of structures with high aspect ratio (>10)
- Applications
 - Anti-reflection surface
 - Scattering area
 - Change of wetting behaviour

Functional Surfaces CLPs - Extreme Enhancement of the Surface Area

- Hydrophobic coating
- CLP (6-7 μm)
- HMDSO Plasma Coating (300 nm)
- Contact angle > 150°

Hydrophylic coating

- CLP (6-7 μm)
- HMDSO Plasma Coating with oxygen (300 nm)

Functional Surfaces

Hydrophobic Surfaces

- Structuring of injection moulding tools
- Laser: Lumera Rapid
 (λ = 355 nm)
- Generation of multiple structures
 - Structure size: 10 µm
 - Sub-structure: 100 nm
- Material: PP, PE

Functional Surfaces

Hydrophobic Surfaces

- Contact angle 174°
- Rejection of capillary leads to slipping of the drop
- Drop sticks to non-structured surface

- Contact Angle <5°</p>
- Complete wetting of the surface

Black Metal

Modification of metal surface properties by a combination of micro and nano structures

- Solar energy
- Catalysis
- Measurement technology

- > 1 cm²/s
- Absorption > 98% (250-3000 nm)
- Hydrophobic or hydrophilic surfaces

Ablation – Surface Texturing

Appl. Phys. Lett. 92, 041914 2008

A. Y. Vorobyev und C. Guo, University of Rochester "black brass"

"black copper"

Ti:Sa: P = 1 W, f = 1 kHz, v = 1 mm/s

InnoSlab: P = 140 W, f = 20 MHz, v = 1000 mm/s A = 40 mm²/s

Control over optical properties of metals from THz to UV by micro and nano structuring of the surface

Black Silicon

- Surface texture: reduces reflectivity and traps incident light inside solar cell
- Laser-based texturization: creation of self organized cones ("black silicon"), deteriorates material quality drastically (amorphization)
- "Soft" full-area laser irradiation in combination with chemical or plasma etching yields first results (feasibility study)
- Laser: TruMicro 5250, 515 nm, 7 ps, ~20 W
 - Fast scanning to separate pulses
 - Single pass, 16 m/s, 400 kHz \rightarrow 38 s for a full 6 inch wafer

Functional Surfaces Thin Film Processing

Requirements for large area electronics:

- Fast, high resolution
- Shape independent
- Different kind of layer materials and thicknesses (organic and anorganic)
- No damage of the substrate
- No delamination
- Laser source
 - Excimer laser
 (193 nm, 248 nm, ns, mask projection)
 - Ultrafast laser
 (355 / 532 / 1064 nm, fs...ps, Scanner deflection)
- Applications
 - OLED lighting and display
 - Thin film PV

SnO on glass 10 ps, 355 nm

PEDOT:PSS 248 nm s= 1.6 ± 0.2 μm

Graphene – Properties

Graphene – Properties

2d Crystal, Monolayer Carbon

- Mechanical stability
- Gas impermeability
- Ballistic charge transport
- THz emission and detection

Graphene – Production by fs-Laser

Jeschke et. Al., 10.1103/PhysRevLett. 87.015003

Irradiation by fs-pulses and fluence $< F_{Th}$

- Oscillation of individual layers
- Momentum transfer normal to surface
- Ablation top surface atomic layer

Simulation (Garcia/Jeschke): non-thermal Ablation of single atomic layers

Molecular resonance @ 106 µm (0,01 eV)

Silicon surface

Experiment (ILT): Demonstration of single atomic layer

Graphene

Deposition of crystalline flakes on glass Deposit fits to the ablation crater

→ no ablation by melting or vaporization

Raman spectra of carbon deposits at different pulse energies

In-Volume Selective Laser Etching: ISLE

Laser In-Volume Structuring

In-Volume Selective Laser Etching, "ISLE"

Processing steps:

 Selective modification of the structure in the volume by fs laser radiation

2) Selective etching of the modified structure

Examples for High Speed In-Volume Micro Structuring

Gears made of fused silica Material thickness, height: 1 mm

- v = 100 mm/s
- P = 200 mW

NA = 0.3

Processing time: 400 s

Micro Structuring of Sapphire by ISLE

Cross-section of micro channel

Cross-section of micro slit in sapphire

→ Length 10 mm

 \rightarrow Length 10 mm, height 125 µm, width 1 µm

Examples for High Speed In-Volume Micro Structuring

Tubes made of fused silica

Diameter and height: 1 mm

v = 25 mm/s

P = 250 mW

NA = 0.3

Outlook: ISLE with High Power 400 W fs-radiation

Very fast modification of cylinders demonstrated – First results

- fs-slab from ILT (400 W, 700 fs, 20 MHz)
- Scanning velocity 3 m/s

Modification of cylinders in BK7 (P = 60 W, 7 s)

Cylinders in fused silica (P = 25-80 W)

Volume Ablation by Ultrafast Lasers / Structuring

Multipass-Ablation of Carbon Fiber-Reinforced Polymers

Pulse duration 10 ps Repetition rate 100 kHz Pulse energy 30 µJ Scan speed 1m/s Ablation per layer 10 µm Pulse duration 100 ns Repetition rate 100 kHz Pulse energy 50 µJ Scan speed 1m/s Ablation per layer 20 µm

Multipass-Ablation of Glass Fiber-Reinforced Polymers

Pulse duration 10 ps Repetition rate 100 kHz Pulse energy 30 µJ Focus diameter 25 µm Scan speed 1m/s Ablation per layer 25 µm Number of pulses ~70

Cutting of Glass Fiber-Reinforced Polymers

- Challenge
 - reduction of heat affected zone
 - clean surface
 - material composition: varying
 - reinforcement materials
 - fiber content and orientation
 - thickness
 - in one component
- Approach
 - pulsed laser
 - optimized process gas flow

Polypropylene with 30-50% glas fiber reinforcement Thickness 4 mm

Cutting of FRP: Strategies for short interaction times

cutting direction + high speed

limited to thin materials

+ pulsed laser beam

intermittent fast advance of the absorption front

+ high speed

2nd pass

last but one pass

- + high speed
- + pulsed laser beam

Joining of FRP and Metal: Laser Based Process Chain

Ablation – Glassy Carbon

Structuring of glassy carbon SIGRADUR®:

Much higher ablation rate at 90 times higher velocity Much less debris at the same efficiency (compared to cw-fiber laser)

Laser In-Volume Ablation

Linear Scanning Glass Ablation

Ablation rate: up to 3 mm³/s @ 150 W output power

Basics

Laser Ablation with (Ultra)short Pulse Laser

- Time for manufacturing 10 hours
- Ablated volume 100 mm³
- Quality of ablation comparable to EDM
- No tools needed

ps-Laser

Structuring of Embossing and Injection Molding Tools

Mint 1 (Ra < 0.3 µm, 26 h)

Star(d = 8 mm, t = 0.5 mm, 1.5 h)

Laser power 10 W @10 ps Pulse energy 5 µJ Spot size 20 µm

Die (Ra < 0.3 μ m, t = 0.6 mm, 35 min)

Mint 3 (Ra < 0.3 µm, 2.5 h)

Die pellet (t =1.4 mm, 10 h)

Shaping of Turbine Blade Cooling Chanel Exit Fans

- Instead of few large holes numerous, small, and contoured holes
- Development of homogenous cooling film by additional hole shaping

Functional Surfaces

Micro Injection Moulding of Lens Arrays with ps-Laser

Surface quality

- After laser ablation: R_a = 300 nm
- After laser polishing: R_a = 100 nm

Functional Surfaces

Combination of Generative and Ablative Techniques

Tool for micro injection moulding

- Preform conventionally manufactured
- Generative process including cooling channels by SLM
- Functional surface by laser ablation

Drilling

Laser Drilling Techniques

Single Pulse Drilling

- High efficiency
- Material ablation by melting
- Percussion Drilling
 - Bore hole geometry depends on beam profile of the Laser
 - High aspect ratios

Trepanning

- Bore hole diameter depends on machine accuracy
- Conical and cylindrical drillings

Helical Drilling

- Material ablation by Sublimation
- High accuracy
- Conical and cylindrical drillings

Cutting Thin Glass Processing

- Cutting by ablation
- Pulse duration 10 ps
- Wavelength 532 nm
- Average Power 20 W
- Number of layers 100
- Scan speed 2 4 m/s

300 µm

Drilling Possible Applications

- Spray nozzle
- Micromesh
- Spinerets
- Nozzles
- Lubricating
- Cooling

(Ø 1...20 μm) (Ø 10...50 μm) (Ø 10...100 μm) (Ø 10...100 μm) (Ø 100...200 μm) (Ø 100...800 μm)

Drilling Helical Drilling Optics

- Drilling Diameter 10-300 µm
- Conical Drilling with Tapering from 1:2 to 2:1
- Aspect Ratio up to 1:40
 Ø = 30 µm at d = 1 mm
 Ø = 40 µm at d = 2 mm

Experimental Setup Principle of image rotating

- Total reflexion inside the Dove-prism
- Rotation of the laser beam twice as fast as the prism itself (2ω -rotation)
 - Higher effective rotation speed
 - Synchronization between polarization and beam rotation
- Besides the helical movement, the laser beam is also rotating in itself
 - Independent from the beam profile, the envelope of all cross sections describes a perfect circle
 - In case of a helical diameter close to zero, the laser beam is only rotating in itself

Drilling Helical Drilling Optics

Drilling Multi-Pass Drilling

- Q-switch Disk laser
- Scan field: 200 x 200 mm²
- Focus diameter: 50 µm
- Number of drillings: 3000 1/s
- Number of pulses: 5

Future Developments High Precision at Large Components

Cutting of fiber-reinforced polymers

Surface structuring

Large area processing

Low friction surfaces

Large Area Processing System Strategies

high pulse energy / low reprate?

or

high reprate / low pulse energy?

kW-Class fs-Amplifier – Laboratory Prototype

Dimension: 50 x 50 cm²

May 4, 2010, 2 am

- 1.1 kW @ 600 fs
- 20 MHz
- 55 µJ
- 90 MW peak
- no CPA
- 2 stages

Commercial Ultrafast Lasers for Materials Processing

High Speed Scanning Technologies

Acousto-optic deflectors x-y-scanning Scanning angles < 2° Scanning speed >100 m/s

Phased array deflectors Single line scanning Scanning angles >20° Scanning speed >500 m/s for EO-devices Requirement from ultrafast laser machining @ f = 50 MHz and d_{spot} = 20 μ m \rightarrow Scanning speed v = 500-1000 m/s

Interferometric Processing

Intensity modulation Intensity distribution depends on Beam configuration e.g. hexagonal mesh for 3-beam set-up y [µm] Polarisation to control intensity distribution Surface structure inside a unit cell Amplitude Phase z [a.u.] z [a.u.] у [µm] х [µm]

Parameter

- Laser: 355 nm, 400 kHz, 10 ps
- Material: Brass
- Spot size: 30-50 µm
- Feed rate: 4500 mm/min
- Periodicty: 780 nm

Bearbeitung mit einem Pulsüberlappansatz

Periodic Nano Structuring

Multi-Beam Interference

- Structure geometry: Ø1 µm; depth: 600 nm
- Material: PEEK
- 100.000 holes with one shot
- Homogeneous structures over the entire spot (Ø500 µm)

Periodic Nano Structuring

Multi-Beam Interference

- Structure geometry: Ø1.6 μm; Depth: 2.3 μm
- Material: Quartz glass
- Structuring into Photoresist
- Subsequent Reactiv Ion Etching

System Technology: Scanning

Replication of Micro and Nano Structures Embossing Roll Manufacturing

- The embossing roll is made of hardened steel
- The structures are generated by direct laser ablation (1064 nm; 10 ps)
- The structures are 800 nm wide and 300 nm high

Large Area Processing

Micro Structured Embossing Rolls

- Material: chrome-plated Copper
- Dimensions: Ø250 mm; length 1 m
- Rotational speed: 1400 rpm (v = 15 m/s)
- Line distance: 2 µm
- Focus diameter: 10 µm
- Laser power: 100 W
- Surface roughness <0.5 µm</p>
- Min. structure size: 5 µm
- No burr

Large Area Processing

Micro Structured Embossing Rolls

Large Area Processing Polygonic Mirror

- Max. Scan velocity: 340 m/s (max. rpm: 12.000)
- Focal distance: 163 mm
- Focal diameter: 20-25 μm
- Scan-field: 100x100 mm²
- Data import: Bitmap, PNG, 2D Array (Gray-scale value corresponds to number of Layers)
- Additional linear motor
- Number of mirrors: 11
- Max. Output Frequency: modulated 20 MHz; digital 40 MHz

Large Area Processing Polygonic Mirror

- Chess pattern
 - Calculation on FPGA
 - 40 MHz Output Frequency
 - Feed rate: 35 mm/s
 - 9500 rpm

AC Dom, ILT + Polyscan Logo

- PNG-Import (25 MPix)
- 10 MHz Output Frequency
- Feed rate: 18 mm/s
- 2800 rpm

Large Area Processing

Multi-Beam Laser Processing with DOEs

Large Area Processing Multi-Beam Laser Processing with DOEs

Large Area Processing

Hybrid Scanner: Acousto-Optic Deflector & Galvanometer Scanner

Future Developments Ultrafast Manufacturing

Today:

- Typical ablation rates of e.g. Aluminum ca. 0,1 mm³/sec
- Limited by max. laser power and scanning speed

Future potential:

- Ablation rates of >5 mm³/sec = 20 cm³/h
- Use of fast deflection systems and >1 kW average Power
- Direct manufacturing of small components e.g. with specific surface features

Process Characteristics

Average Power: > 1 kW (ILT still world record) typ. **10 MHz** Repetition Rate: **100 µJ (@** 1 ps) Pulse Energy: Pulse Power: 100 MW 100 TW/cm² = 10^{14} W/cm² @ (10 µm)² Intensity: Penetration depth: dep. on material, app. 100 nm @ 1 ps Energy density: 10^7 J/cm³ (Vap. enthalpy metal < 10^5 J/cm³) Ablation Rate: $5-10 \text{ mm}^{3}/\text{s}$

Application Markets

Example Measurement Technology: Two Photon Microscopy

Only in the focus there is sufficient intensity for **simultaneous absorption of two Photons**

Femtosecond Lasrers provide the intensity

Probability for two "simultaneous" Photons ${\bf \sim l^2}$ \rightarrow small excitation volumen

Resolution ~300 nm radial and ~500 nm axial (for Infrared 800 nm)

High penetration depth of infrared (up to 1 mm in organic tissue)

🗾 Fraunhofer

Example Measurement Technology: Two Photon Microscopy

Laser-Rastermicroskope

Two-Photon-Microskope

Application Markets

Example Life Science: Tooth in vitro

"Precision Meets Ablation Rate with Macroscopic Relevance"

Short pulsed bone tissue ablation

ps-laser

- Nd:YVO₄, $\tau_p = 25 \text{ ps}$
- $P_{\text{max}} = 20$ W @ λ = 532 nm
- $f_{\rm rep} = 20 \, \rm kHz$
- $w_0 = 16 \,\mu\text{m} \rightarrow I = 5.10^{12} \,\text{W/cm}^2$
- Scan speed $v_{sc} = 4$ m/s (fast axis)

incision in bovine femur

- width *B* > 0,5 mm
- length 2 mm < L < 8 mm</p>
- aspect ratio depth : width = 5
- ablation rate dV/dt = 0,2 mm³/s

Prototype for hand-guided osteotomy

Prototype for hand-guided osteotomy

Summary of Future Tends

- Digital Photonic Production is widely developing
- Ultrafast High Precision Machining is presently the fastest growing Laser Application Market
- Need for Process development/ strategy, especially System Development
- Diode Laser Technology will decide global leadership

SAVE THE DATE

LASER APPLICATIONS OF TOMORROW MAY 7 - 9, 2014 IN AACHEN

Fraunhofer Institute for Laser Technology ILT

www.lasercongress.org

TECHNOLOGY CONGRESS

INTERNATIONAL LASER

Questions?

End of presentation

Thank you very much for your Attention

