

Recent developments in X-ray imaging

Dr. Bruno Koller Dr. Stefan Hämmerle SCANCO Medical AG

www.SCANCO.ch

SCANCO Medical

- Company
- Systems and components
- Applications
- Analysis/Quantification
- New Methods

SCANCO Medical AG

- Company founded in 1988
- IBT (ETH/UNI Zürich) bone research using computed tomography to measure **bone density**
- Focus of presentation on CT scanning
- Systems for nondestructive testing of material in 3D

Systems

- Specimen scanners
- Animal systems
- Patient system

Patient (extremities) scanner (~60 µm)

Small Animal Systems (~10 µm)

Specimen Scanners (~1 µm)

Components today

- Sealed Microfocus x-ray tube
- CCD Detector with fiber optic scintillator

Swiss Photonics – Scanco Medical

Synchrotron

- Very high flux
- Coherent radiation
- Monochromatic X-rays

• X-ray tube

- Sealed tube (still the same as what Conrad Röntgen used)
 - Microfocus: Dispenser Cathode, electrostatic focusing, 8μm /8W (<1% of electron beam energy is converted into x-rays!)
- ✓ Open tube
 - <1µm
 - Higher magnification

- Rotating Anode
 - 80kW for short time (Focus in mm range)
 - \checkmark Down to ~100 μm focus available

• Liquid jet (e.g. Ga/In/Sn)

source: www.excillium.com

source: www.excillium.com

Up to ~30 x brighter than a sealed microfocus tube

- Indirect Detector
 - Scintillator (efficiency/resolution)
 - ✓ Fiber optic (geometric distortion)
 - ✓ Pixel array (size, efficiency, resolution, speed,...)

DIGITAL X-RAY: A FIBER PLATE PROTECTS THE SENSORS

source: www.schott.com

X-ray Detector

- CCD, Full frame
 - ✓ ~100% fill factor, X-ray needs to be blocked during readout (~50ms)
 - 50µm pixel size, parallel outputs (4/segment)

X-ray Detector

- CMOS active pixel sensors ("DSLR-like")
 - ✓ Very low noise (few electrons)
 - Fast readout (>10 Frames/s, 200Mbyte/sec)
 - Rather small pixels (few microns ->Scintillator, Fiber optic)
 - ✓ Low fill factor (+/- 50% except back illuminated)
 - Limited area (standard up to 24 mm x 36 mm)
 - Additional functionality (windowing, rolling shutter, global shutter)

X-ray Detector

- CMOS x-ray flat panel
 - $\checkmark\,$ Pixel size from $24 \mu m$ to $100 \mu m$
 - ✓ Low Nosie (~100 electrons)
 - Relative large area (up to 11cm x14cm single tile size, buttable for larger area)
 - ✓ Acceptable fill factor (~80%)

X-ray Detector

- Indirect detection with TFT Flat panel and scintillator
 - ✓ Large area (e.g.43cm x 43cm)
 - Larger pixels (75μm- 400μm)
 - Radiation tolerant (no fiber optic, suitable for high energy >200keV)

 Direct detection with TFT Flat panel amorphous Selenium, direct conversion of x-ray photons into electrons

X-ray Detector

- Hybrid, Photon counting, direct detection (CdTe, Cd(Zn)Te,Ge,GaAs)
- Allows energy selective photon counting

Source: www.dectris.com

Detector summary

- CMOS sensor (active pixel sensor, front illuminated/back illuminated)
- CMOS x-ray flat panel (as in Cone beam CT, Mammography systems, Digital x-ray)
- TFT flat panel (direct/indirect)
- Hybrid, photon counting detectors

New components allow

• Dedicated systems

✓ …

- Larger objects, still very high resolution (8kx8k images)
- Big objects, low resolution, but ultrafast
- Very small objects, extremely high resolution

Wider industrial fields I (LR, fast)

- Baggage inspection
- "and dual-energy 3-D imaging for large baggage"
- "at 1,000 bags per hour"

Source: Leidos, USA, www.leidos.com

Wider industrial fields II (LR, fast)

• "Scan speed down to 15 sec. for a cylinder head" (GE)

Sources:

Rayscan, www.rayscan.com GE/Phoenix X-ray, www.phoenix-xray.com

Wider industrial fields III (BIG, fast)

- Wood
- up to 180 m/min

Source: Microtec Italy, www.microtec.eu

Wider industrial fields IV (ultra HR)

Sources: SCANCO Medical AG, www.scanco.ch Zeiss AG, www.zeiss.com

Applications

- Porous structures
- Fibers
- Paleontology
- Thin layers / Wall thickness
- Hidden Features
- Electronics
- Food
- ...

Porous Structures / Wood (match)

Fibers / Climbing Rope

Paleontology / Falcon Mummy

Thin Layers / Laserprinted 'A'

Image Analysis and Quantification

- Densitometry
- Morphometry
- Metrology
- Rapid Prototyping
- FEA
- ...

Densitometry/Human Bone

Morhpometry

Skin/Blood Vessels

Pore thickness

Attachment Analysis

 Is the implant attached to bone? expressed in % of the (local) implant diameter

Accessible Pore Volume

- Permeability can be simulated: Accessible Pore Volume for a given 'cell size' (mercury intrusion)
- Virtual spheres with increasing diameter
- Accessible volume decreases

Reverse Engineering + Rapid Prototyping

Finite Element Analysis

Trabecular Bone

Human Femur

New methods

- Phase contrast imaging with laboratory x-ray source
 - free-space propagation
 - grating interferometer-based techniques.
 - Speckle-Based
- Dual (multi) energy CT (energy resolving detector)
 - Low concentration of contrast agent
 - Reduction of metal artefacts
- Time lapsed CT
 - Motion Analysis
- Multi-modality imaging (CT, PET, SPECT combined with MRI and optical methods)

Phase contrast

Absorption Differential Phase Dark Field

For this slice please follow the following link:

http://www.nature.com/articles/srep03209

Source: In-vivo dark-field and phase-contrast x-ray imaging, M. Bech, A. Tapfer, A. Velroyen, A. Yaroshenko, B. Pauwels, J. Hostens, P. Bruyndonckx, A. Sasov & F. Pfeiffer, *Scientific Reports* 3, Article number: 3209 (2013)

Dual Energy CT

Source: NIH, www.nih.gov

Time lapsed CT

U-CT: Fast CT acquisitions

MILabs

Enabling cardiac- and respiratory-gated images

Source: MILabs, www.milabs.com

Multimodal Imaging (PET-CT)

Source: HUG, pinlab.hcuge.ch

Questions?

