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Introduction
Why color sensors for smart lighting?

B »Mixing« of light required for color tuning (»tuneable white«)

B High-quality lighting requires precise color matching
over time and from luminaire to luminaire

B Wavelength of LEDs changes with temperature and due to aging

B — How to keep the color of a luminaire constant?
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1. Introduction
Why color sensors for smart lighting?

B Color-sensing feedback is more reliable than binning and
modeling temperature and aging effects of LEDs

Microcon troller

Color Sensor

LN

White

White LED Driver

controling LEDs

detecting color

User Interface

B — Cost-effective color sensors are needed for
high-volume illumination applications
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1.

Introduction
Technologies for color sensors

M Various filter technologies are well established:
Absorption filters, e. g. red, green, blue pigmentfilters (Bayer filter)
Dielectric filters (thin film filters, interference filters)

In spectrometers: prisms, gratings, tunable filters

M Are there other approaches ...
... feasible using CMOS semiconductor technolgy?

... enabling highly integrated sensors at low cost?
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2. Methodology
Nanostructures in nature
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2. Methodology
Surface plasmon resonances

B Perforated metal films (»hole arrays«)
= resonances of oscillating electrons,
»enhanced transmission« (Ebbesen 1998)

B Color and multispectral sensors feasible

B Resonance wavelength can be tailored by
geometry at constant layer thickness
= ideal for CMOS!

Extraordinary optical
transmission through
sub-wavelength hole arrays
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The desire to use and conirol photons in & manner analogous (o
such
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dynamics and near-field optics’ fundamental constraint in
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tures smaller than the wavelength of the incident photon. While
exploring the optical properties of submicrometre cylindrical
cavities In metallic films, we have found that arrays of such
holes display highly unusual zero-order transmission spectra
(where the Incident and detected light are collinear) at wave-

muludmtbeuudmuu) which is orders of magnitude
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tions—on the surface of the periodically p: -Ilmxdmﬂﬁm
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angle result in a photonic band diagram. These findings may find
application In novel photonic devices.

A variety of two-dimensional arrays of cylindrical cavities in
metallic films were prepared and analysed for this study. Typically, a
silver film of thickness ¢ = 0.2 um was first deposited by evapora-
tion on a quartz substrate. Ammays of cytindrical holes were
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fabricated through the film by spuattering using 3 Micrion
focused-ion-beam (FIB) System 9500 (50keV Ga ions, 5nm nom.
inal spot diameter). The individual hole dlameter d was varied
between 150nm and 1 jum and the spacing between the holes (that
is, the periodicity) iy, was between 0.6 and 1.8 wm. The zero.order
transmission spectra, where the incident and detected light are
collinear, were recorded with a Cary 5 ultraviolet-near infrared
spectrophotometer with an incoberent light source, but the arrays
were also studied on an optical bench for transmission, diffraction
and reflection properties using coherent sources.

Figure | shows a typical zero-order transmission spectrum for a
square array of 150 nm holes with a period a, of 0.9 um in 2 200 nm
thick Ag film. The spectrum shows a number of distinct features. At
wavelength A = 326nm the narrow bulk silver plasmon peak is
observed which disappears as the film becomes thicker. The most
remarkable part is the set of peaks which become gradually stronger
at longer wavelengths, increasingly so even beyond the minimunm at
the periodicity @,. There is an additional minimum at A =g, ¢

electro-  corresponding to the metal-quartz interface (where ¢ is the
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2. Methodology
Nanostructures as spectral filters

Light .
Optical layer 2 l l l l Optical layer 1

Anode Cathode

etal layers

Conventional CMOS photodiode Photodiode with added metal layers
as on-chip optical filters
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3. EU-funded project »LASSIE-FP7«

Large Area Solid State Intelligent Efficient luminaires

Property of the LASSIE-FP7 Consortium

* X
* *
* *
* * |  —
* oy Kk SEVENTH FRAMEWORK
PROGRAMME

= CSe

777 O REGENT

LIGHTING

4

Z Fraunhofer
- .l LFoundry )
~ Fraunhofer (.

11sB

\

= Fraunhofer
1S



3. »LASSIE-FP7«
CMOS nanostructures as color filter

® Hole arrays with a typical period of 200 — 400 nm and
»enhanced transmission« due to plasmon resonances are used

M Filter wavelength is tailored by varying the geometry
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3. »LASSIE-FP7«

Simulation of metallic nanostructures

Simulation: green filter (band pass)
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3.

»LASSIE-FP7«

Simulation of metallic nanostructures
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® Example for a filter set of
color/multispectral sensor

I
data

fit

m Typically, 8-16 spectral channels
] are used

B More robust than color sensors
with 3 channels, more spectral
information
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Spectral filters covering the

wavelength range from 400 — 600 nm
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3. »LASSIE-FP7«
Fabrication of CMOS color sensor
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3. »LASSIE-FP7«
Color tuning concept
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® Colour conversion film optimised
for 4000 K (main application)

Red + green + blue LED for colour
tuning

Target tuning range:
CCT 2700 - 6500 K

Feedback control algorithm tunes
from actual to nominal colour
point iteratively
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3. »LASSIE-FP7«
Color feedback demo
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3. »LASSIE-FP7«
Color feedback demo
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3. »LASSIE-FP7«
Color feedback demo
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»LASSIE-FP7 «
Color sensor demo at the LASSIE booth

B Multispectral sensor

® Microcontroller board
for sensor configuration
and data acquisition

B Live sensor data at
different colored
illumination conditions
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Conclusions

B High-quality LED lighting systems benefit from color feedback sensors

B Photodiodes with on-chip colour and multispectral filters can be

fabricated in high volume at low cost using a CMOS process

® Implementation of color feedback loop in order to stabilize the

chromaticity point of LED luminaires demonstrated in »LASSIE-FP7«
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