

Changing the way we count photons

"Impact and challenges of micro-optics for SPAD detectors"

Cyril Saudan Pi Imaging Technology

Pi Imaging Technology - cyril.saudan@piimaging.com

Company introduction

Company roots

- SPADs developed at TU Delft and EPFL since 2004 by cofounders Claudio Bruschini and Edoardo Charbon
- Technology transferred from EPFL + PIT's own sensors
- Application specific detectors

Why SPAD arrays?

- SPADs have exceptionally **high readability of low light signals** (quantified in a high signal-to-noise ratio)
- SPAD have extremely **precise timing** (quantified in a low standard deviation)

Pi Imaging Technology - cyril.saudan@piimaging.com

Commercialized products

• 23 SPAD pixels array

• Wide detection spectrum

SPAD23

- Low dark noise
- Picosecond time tagging

1.3 mm

Super-resolution microscopy with SPAD23

SPAD512²

- 512x512 SPAD pixels
- Photon-counting up to 100'000 fps
- Picosecond time-gating
- Low dark noise
- No readout noise

High-speed imaging with SPAD512²

Micro-optics for SPAD detectors

Why micro-optics on SPADs?

- Main challenge: SPAD pixels contain embedded electronics
- The active area is therefore small, typical fill factors are between 10 and 25%
- Micro-lenses focus the light on the active area, sensitivity is greatly improved

Without micro-optics: up to 90% of the photons are lost

With micro-optics: up to <u>8x</u> more photons can be captured

Why micro-optics on SPADs?

Micro-optics fabrication flow

Mould fabrication: PR reflow

- First moulds have been created with photoresist reflow process
- Well established process
- Lens quality and uniformity over the array is very good
- Micro-lenses shape is limited

Mould fabrication: PR reflow limitations

- Reflow works well with circular lens but leaves gap between the them
- Square lenses are another problem as they get distorted after reflow
- With this technology, we can increase the light collection by 4.5x

using additive manufacturing

 This allowed for relatively quick micro-lenses parameters experimentation

Second mould was created

• Freedom of the lens shape and dimensions

25 µm

Mould fabrication: 2PP lithography

Mould fabrication: 2PP lithography

Mould fabrication: 2PP lithography limitations

- Gapless micro-lenses can be fabricated but quality is coarse
- Stitching creates artifacts
- Overall, the sensitivity was improved 10% compared to PR reflow approach
- The uniformity over the array was however reduced

Pi Imaging Technology - cyril.saudan@piimaging.com

Mould fabrication: 3rd approach

- Freedom of the lens shape and dimensions
- Gapless design is possible
- Higher throughput with high quality lenses

Mould fabrication: 3rd approach limitations

- No more stitching artifacts
- Some roughness persist (postprocessing?)
- Thanks to gapless design and good quality, the sensitivity is expected to increase by 6-8x

Micro-optics imprint: challenges 1

- Alignment of the mould with the SPAD pixels is critical (active area as small as $3\mu m)$
- Distance between lens and active area is critical ("focal length")
- This distance must be uniform across the array → undesired gradients
- Defects can occur (lens merging with PR reflow, de-moulding artifacts, etc..) and will have a big impact on image sensors

Micro-optics imprint: challenges 2

- Reticle-based imprints work well for prototyping but limit throughput
- Wafer scale imprints are investigated to increase throughput and reduce cost
- All challenges related to imprints become critical due to bigger imprinted area

Micro-optics imprint: challenges

Conclusion

- Micro-optics are extremely important for SPAD detectors as they directly improve the sensitivity
- Optimizing the process for higher throughput, better yield and higher alignment of imprints will be the future challenge
- We hope to achieve 8x sensitivity improvement with our current flow, this will be tested soon with the real imprinted detectors

Pi Imaging Technology, Fondation EPFL Innovation Park 1015 Lausanne, Switzerland Email: info@piimaging.com Website: piimaging.com