Smart machine and process control

in chocolate mass production

Manuel Hoehener MSc. Mechatronics

2016-06-01

Agenda. Smart machine and process control.

Introduction Chocolate Mass Production.

Smart machine and process control.

Vision, goal and tasks.

Smart machine and process control.

Vision

Each machine optimize automatically its throughput / quality. With a M2M connection the whole line could be optimized

Goal

- elimination human factor → constant quality
- increased machine / line efficiency → minimize line cost (TCO)
- use expert knowledge \rightarrow implement know how and multiply with sensors

Tasks

Optical monitoring points:

Advantages and disadvantage of optical sensors.

Smart machine and process control.

Why we use optical sensors?

Pros

- Contactless
- Wear-free
- Visual impression, close to human experience
- 3D information
- more opportunities (IR, NIR etc.)

Cons

- Distance to the object
- Free view to the object
- Resolution
- Reflections
- Visible range
 - Illumination \rightarrow heat
 - incidence of extraneous light
 - depth of focus

Customers aspects

Machine can be closed

- \rightarrow hygienic design / process visualization in control room
- Danger of lens contamination
- Glass not usable in food process
- Safety issues
- Reliability

- → cleaning
- \rightarrow lens
- \rightarrow laser class
- \rightarrow algorithm

Implemented solutions I

Smart machine and process control.

Roll dry run protection on final refiner

Method:CMOS image sensor b/wLED infrared illuminationRequirement:Free view to the object

- Remission of IR signal is an indicator of the roll coverage level
- Threshold levels according to intensity

Implemented solutions II

Smart machine and process control.

Online particle size measurement on final refiner

Method:Discrete NIR spectrometer
Relative measurement → calibrationRequirement:Chocolate powder is IR active

- Product ingredients absorb NIR-radiation (energy)
- The wave length depends on the substance and is determinable
- The peak height correlates with the amount of substance, based on the calibration substance
 - → After calibration, the film thickness can be calculated

Implemented solutions III

Smart machine and process control.

Sensor composition

The lamp characteristic is continuously assessed by the secondary detector and by rationing this against the primary detector, wavelength by wavelength, the influence of the sensor is eliminated

Calibration process

- A single particle size measurement at three different roll speeds (R2) has to be taken for every single recipe
- Particle size readings are adjusted by a calibration equation of a straight line

Fineness $\approx f(product intake, shear)$

Implemented solutions IV

Smart machine and process control.

Roll coverage control on final refiner

Collaboration with **n** *w* Fachhochschule Nordwestschweiz

Method:

2 Laser-Scanner (l/r) Remission and distance Free view to the object

Requirement:

Function:

- Normalization of the remission data's rotating mirror with six surfaces → differences in the reflection and intensities
- Preprocessing

Binary (max./min filter) in black and white

Data filtering

Analysis of the pattern in combination with dynamic information (power spectrum)

- Add left and right scan
- Condition evaluation

Examples of implemented solutions V

Smart machine and process control.

Pattern

Different types of «coverage failures» and their corresponding machine setting failure

Control

- Algorithm calculates most probably process failure
- Patterns compared with actual settings
- Calculation of corrections
 - Roll temperature window
 - pressure setting left and right
 - etc.
- Automatic update of machine parameters

Further developments VI

Smart machine and process control.

Optical belt scale

Method: Laser-S 2D dist Requirement: Free vi Bulk de

Laser-Scanner 2D distance Free view to the object Bulk density product Speed of the belt

- Scanner measures the product topology (Area)
- Calculation of the product volume (topology over time)
- Weight calculation with bulk density

$$\dot{m}\left[\frac{kg}{h}\right] = 3600 * A[cm^2] * v\left[\frac{cm}{s}\right] * \rho\left[\frac{kg}{cm^3}\right]$$

Further developments VII Smart machine and process control.

Online monitoring of structure change I

Method:

Requirement:

Laser-Scanner 2D distance Free view to the object

- Determination of the surface roughness average → filling height standard deviation → roughness
- Determination of particle size (detrend principle) difference between trend and real signal

Further developments VIII Smart machine and process control.

Online monitoring of structure change II

Method:

Camera

Requirement:

gray scale image Free view to the object

Function:

- Detect edges
- Tracking edge pixels
- Calculating area
- Analysis uniformity and edge pixels

Original Image

Definition of 10 representative structures

Further developments IX

Smart machine and process control.

Control

Use of SI for model predictive control

Conclusion and outlook

Smart machine and process control.

- Diversity and development of sensors fast growing
- Analytical methodology as highly improved
- Calculation power has increased dramatically

- More complex as it seems to be
- Environment is very important

CHOCOLATE doesn't ask silly questions CHOCOLATE understands