

# **Norkshop Al in Photonics Swissmem und Swissphotonics**

Machine learning for optical quality inspection

Thomas Grünberger plasmo Industrietechnik GmbH Vienna 2019-09-03



#### content

- company presentation
   plasmo
- o data is not information
  - o human intelligence
  - o artificial intelligence
- examples machine learning









company plasmo



#### global. focussed. independent.









### 800

# more than 800 plasmo systems in operation













### 100

# more than 100 global customers using plasmo





WE MAGNETISE THE WORLD



### plasmo quality suite visualization









#### basic technologies





plasmoeye

06



#### contact

#### austria

plasmo Industrietechnik GmbH Dresdner Str. 81-85 1200 Vienna phone +43 1 236 26 07-0 www.plasmo.eu

#### germany

plasmo Industrietechnik GmbH NL Deutschland Leitzstr. 45 70469 Stuttgart phone +49 711 49066-307 www.plasmo.eu



#### usa

plasmo USA LLC 44160 Plymouth Oaks Blvd, Plymouth, MI 48170 phone +1 734 414 7912 www.plasmo-us.com

#### china

plasmo China 42F Wheelock Square 1717 Nanjing West Road Shanghai 200040/P.R. China phone +86 21 8028 6166 www.plasmo.cn



### data is not information



### technology

strategy

VISION

### **INNOVATION**

creativity



#### how to extract information from data

- o data plausibility
- data analytics 0
  - o human intelligence
  - o artificial intelligence
    - o machine learning
      - o deep learning







### data analytics

- o data architect
- o data engineer
- o data scientist
- o business analyst
- $\circ$  devops





### SQL/no SQL

o Docker

• Kybernets

o DFS

(i . . .

0

cloud/edge/fog



#### human intelligence and graphical data analytics aggregation seam and part level



All Data records: 32152; Current selection: 0 data records (0.00 %); Context: 0 data records (0.00 %); Focus: 0 data records (0.00 %)



| ·•  | DateTime 🛛 🖌        | Index 🛛 📕   | channel_ok_asString | StationName 🛛 📉   | PartType 📕 | SeamName 🛛 📉 |
|-----|---------------------|-------------|---------------------|-------------------|------------|--------------|
| 0-  | 2015-03-19 00:00:00 | 1           | ОК                  | Machine1          | Part1      | Part1N1      |
|     | 2015-03-19 00:00:00 | 2           | ОК                  | Machine1          | Part1      | Part1N2      |
| 0   | 2015-03-19 00:00:00 | 3           | ОК                  | Machine1          | Part1      | Part1N3      |
| 0-  | 2015-03-19 00:00:00 | 4           | ОК                  | Machine1          | Part1      | Part1N4      |
|     | 2015-03-19 00:00:00 | 5           | ОК                  | Machine1          | Part1      | Part1N5      |
| :57 | 2015-03-19 00:00:00 | 6           | ОК                  | Machine1          | Part1      | Part1N8      |
|     | 2015-03-19 00:00:00 | 7           | ОК                  | Machine1          | Part1      | Part1N7      |
|     | 2015-03-19 00:00:00 | 8           | ОК                  | Machine1          | Part1      | Part1N6      |
| 0   | 2015-03-19 00:00:00 | 9           | ОК                  | Machine1          | Part1      | Part1N9      |
| 0   | 2015-03-19 00:01:00 | 10          | ОК                  | Machine1          | Part1      | Part1N1      |
|     | 2015-03-19 00:01:00 | 11          | ОК                  | Machine1          | Part1      | Part1N2      |
| 0   | 2015-03-19 00:01:00 | 12          | ОК                  | Machine1          | Part1      | Part1N3      |
|     | 2015-03-19 00:01:00 | 13          | ОК                  | Machine1          | Part1      | Part1N4      |
|     | 1                   | 10000 32152 | OK NOK              | Machine1 Machine2 | Part2      | 52           |
| .57 |                     |             |                     |                   |            |              |

3



#### human intelligence and graphical data analytics aggregation machine level







#### human intelligence and graphical data analytics aggregation site level



All Data records: 32152; Current selection: 0 data records (0.00 %); Context: 0 data records (0.00 %); Focus: 0 data records (0.00 %)



|   |             |          |      | plasmo                |
|---|-------------|----------|------|-----------------------|
|   |             |          |      |                       |
|   |             |          |      |                       |
|   |             |          |      |                       |
|   |             |          |      |                       |
|   |             |          |      | 14000                 |
|   |             |          |      |                       |
|   |             |          |      | 12000                 |
|   |             |          |      | 10000 (jo<br>3X 10000 |
|   |             |          |      | Value (Bo             |
|   | •           |          |      | Mean                  |
|   |             |          |      |                       |
|   |             |          |      | 6000                  |
|   |             |          |      | 4000                  |
|   |             |          |      |                       |
|   | -           |          |      | 2000                  |
| 1 | StationName | Machine2 | 🐼 Au | to 📪 📑                |
|   |             |          |      |                       |



#### human intelligence and graphical data analytics root cause analysis









#### human intelligence and graphical data analytics process optimization

- statistical analysis of
  - defect positions
  - o defect types
  - o date/time
  - material/vendor
  - maintenance planning
  - Ο . . .
  - finding correlations, Ο trends









All Measurements: 698; Current selection: 345 measurements (49.43 %); Context: 0 measurements (0.00 %); Focus: 0 measurements (0.00 %)



### artificial intelligence





#### artificial intelligence definitions

- o Al Artificial Intelligence
  - tries to model human intelligence
    cybernetics, ...
- o statistics
  - tries to define what happened
    DM and ML came from statistics



- DM Data Mining
  - tries to explain why something happens (e.g. root cause)
- o ML Machine Learning
  - tries to explain what will happen in future and how to optimize or avoid certain situations
  - ML is a first step for model human intelligence and can be seen as part if AI



#### machine learning techniques

- o supervised learning
  - o target is known
  - develop model based on input and output data
- o unsupervised learning
  - group and interpret data based only on input data







### examples



#### diode based process monitoring welding of thin sheets

- 2 sensors are used (different wavelengths), 710 test runs (index), one measurement consists of 2050 measurement values.
- for one complete seam (4 dimensions)







### information is expected in the characteristics mean value and standard deviation





#### diode based process monitoring unsupervised learning

are there clusters in the data? 0

k-means





#### manifold learning





#### diode based process monitoring supervised learning

OKNOK and defect types were analysed via DT and NDT techniques

**OKNOK** distribution





#### classification logistic regression





#### diode based process monitoring supervised learning

Ο yields in optimal results (comparison based on confusion matrix)







Actual



### comparison of different modelling techniques for OKNOK, ANN and random forest

Actual

#### random forest

#### artificial neural network



Predicted





#### diode based process monitoring supervised learning

○ 3D visualisation of the task (OK runs type 1 and 3 defect types (-3, -2, -1)









#### diode based process monitoring summary

unsupervised learning shows 4 different 0 clusters correlating with the 4 defect types

supervised learning using machine learning 0 techniques enables correct classification



#### at least 3 different characteristics and at least 2 different diode signals needed





#### camera based weld seam monitoring

- $\circ~$  camera based weld seam monitoring enables the detection of visible defects
- used in addition to process monitoring systems detecting defects defects like lack of fusion, porosity, no full penetration, ..., which can't be seen at the top of the seam
- o gray value or color images useable
- example welding of C shaped seams







#### camera based weld seam monitoring supervised training, deep learning

- deep learning are available the last few years due to computational power 0 (e.g. GPU processing)
- artificial neural networks are used typically using many neurons
- different approaches available including pretrained nets for specific tasks Ο
- unsupervised deep learning also usable
- supervised learning using training, test and validation data set Ο

 check for inter- and extrapolation capabilities (e.g. overtraining) plasmo



#### camera based weld seam monitoring supervised training, deep learning

#### trainings data set 0 classified correct









275.jpeg|0:0, trained











279.jpeg|0:0, trained











316.jpeg|0:0, trained





319.jpeg|0:0, trained





320.jpeg|0:0, trained





#### camera based weld seam monitoring supervised training, deep learning

#### test data set 0 1 false positive and 1 false negative



























NIO NIO 100%



# camera based weld seam monitoring supervised training, deep learning

trainings data set
 classified correct





Image 026.png|0:0, trained







# camera based weld seam monitoring supervised training, deep learning

## test data set classified correct











Image 017.png(0:0



| p



#### camera based weld seam monitoring summary

- deep learning gives better results compared to manual inspection 0
- unsupervised approach also applicable (presentation of OK seams and detection Ο of anomalies)
- models can be trained once or retrained online
- result depends on input data and correct classifications (supervised) Ο







#### machine learning at plasmo summary

- $\circ\,$  dashboard based analysis of production and sensor data (SPC)
  - o correlations
  - o trend analysis
- modelling OKNOK for different sensors for quality inspection of different joining techniques (laser, TIG, plasma, FSW, ...)
- unsupervised clustering of sensor data for all applications
- genetic algorithms for supervised or unsupervised automatic parameterisation of quality inspection systems





#### machine learning at plasmo summary

- deep learning for image based analysis Ο
  - analysis of powder bed images (AM) and classification of different Ο defect types
  - Ο





#### unsupervised analysis of image staples (layer by layer) in additive manufacturing

example 3D visualisation of 50 layers building a bridge (1mm height)

-> up to 10.000 layers (images) has to be analysed for a real job





#### machine learning at plasmo summary

- some tips from our experience 0
  - don't learn existing knowledge
  - keep it as simple as possible
  - 80percent rule: 80% is data preparation, 20% is data analysis Ο





Tony D'Amato (Al Pacino) in "Any given Sunday"

### "Inch by inch. Play by play. Until we get there."

