Holistic Life Cycle Analysis: Focus on CdTe Photovoltaics

Vasilis Fthenakis

Center for Life Cycle Analysis, Columbia University and Photovoltaics Environmental Research Center, Brookhaven National Laboratory

Presentation at the SwissPhotonics Workshop, Environmental and Economic Impact of PV Energy Production EMPA, Zurich, 22 October 2013

CU-BNL: Outcomes from LCA research

- Original, data-based LCA on current & emerging PV technologies
 - CdTe PV
 - High-efficiency mono-crystalline PV
 - High Concentration PV (Si and III/V)
 - GIGS PV
 - Advanced c-Si PV
 - Organic PV
- Corrected misrepresentations of PV environmental profiles
 - Emissions
 - Energy Payback Times-Energy Return on Investment
 - Land use
 - Risks
- Addressing sustainability of large-scale deployment
 - Materials availability
 - Recycling technologies
 - PV variability Grid integration
- Effective Dissemination of research results
 - Bibliography of 300 articles, ~60 on LCA
 - www.bnl.gov/pv
 www.clca.columbia.edu

Large Scale PV – Sustainability Criteria

Zweibel, Mason & Fthenakis, A Solar Grand Plan, <u>Scientific American</u>, 2008 Fthenakis, Mason & Zweibel, The technical, geographical and economic feasibility for solar energy in the US, <u>Energy Policy</u>, 2009 Fthenakis, The sustainability of thin-film PV, <u>Renewable & Sustainable Energy Reviews</u>, 2009 Fthenakis, Sustainability metrics for extending thin-film PV to gerawatt levels. MRS Bulletin, 2012.

Large Scale PV –Sustainability Criteria: Focus on CdTe PV

Zweibel, Mason & Fthenakis, A Solar Grand Plan, <u>Scientific American</u>, 2008 Fthenakis, Mason & Zweibel, The technical, geographical and economic feasibility for solar energy in the US, <u>Energy Policy</u>, 2009 Fthenakis, The sustainability of thin-film PV, <u>Renewable & Sustainable Energy Reviews</u>, 2009 Fthenakis, Sustainability metrics for extending thin-film PV to **4**erawatt levels. MRS Bulletin, 2012.

A Solar Grand Plan

The technical, geographical, and economic feasibility for solar energy to supply the energy needs of the US

Vasilis Fthenakis

James E. Mason Ken Zweibel Energy Policy 37 (2009)

Affordability: Projected PV Growth and Electricity Price Targets

Source: Solar Technologies Program, US-DOE, 25th EUPV, Valencia, Spain, Sept. 2010

Life Cycle Analysis

Experimental Research at BNL

Comparative Life-Cycle Analysis Metrics

Energy Payback Times (EPBT) and Energy Return on Investment (EROI)
Greenhouse Gas Emissions
Toxic Emissions
Resource Use (materials, water, land)
EH&S Risks

Zero impact technology does not exist → Compare with other energy producing technologies as benchmarks

Energy Payback Times (EPBT)

Insolation: 1700 kWh/m²-yr (Southern Europe)

Based on data from 13 US and European PV manufacturers

- Fthenakis et al., EUPV, 2009
- deWild 2009, EUPV, 2009
- Alsema & de Wild, Material Research Society, Symposium, 895, 73, 2006
- deWild & Alsema, Material Research Society, Symposium, 895, 59, 2006
- Fthenakis & Kim, Material Research Society, Symposium, 895, 83, 2006
- Fthenakis & Alsema, Progress in Photovoltaics, 14, 275, 2006

EPBT Historical Evolution

Irradiation of 1700 and 2400 kWh/m²/yr

Fthenakis, PV Energy ROI Tracks Efficiency Gains, Solar Today, 2012

Greenhouse Gas (GHG) Emissions

Insolation: 1700 kWh/m2-yr

Based on data from 13 US and European PV manufacturers

- Fthenakis et al., EUPV, 2009
- deWild 2009, EUPV, 2009
- -Fthenakis, Kim & Alsema, ES&T, 42, 2168, 2008
- Alsema & deWild, Material Research Society, Symposium, 895, 73, 2006
- deWild & Alsema, Material Research Society, Symposium, 895, 59, 2006
- Fthenakis & Kim, Material Research Society, Symposium, 895, 83, 2006
- Fthenakis & Alsema, Progress in Photovoltaics, 14, 275, 2006
- 11

GHG Emissions from Life Cycle of Electricity Production: Comparisons

Fthenakis & Kim, ES&T, 42, 2168, 2008

Life-cycle Toxic Emissions

Case 1- 2006 electricity mixture in Si production-Crystal Clear project; Case 2- UCTE grid mixture & Ecolnvent database;

Case 3- US grid mixture & Franklin database.

Ground-mounted, Southern European insolation, 1700 kWh/m2/yr, performance ratio =0.8, lifetime=30 years

Fthenakis, Kim and Alsema, Environmental Science & Technology, 2008

Life-Cycle Cd Atmospheric Emissions

Fthenakis and Kim, *Thin-Solid Films*, 515(15), 5961, 2007 Fthenakis, Kim & Alsema, *Environ. Sci. Technol*, 42, 2168, 2008

Life-Cycle Cd Atmospheric Emissions

Fthenakis and Kim, *Thin-Solid Films*, 515(15), 5961, 2007 Fthenakis, Kim & Alsema, *Environ. Sci. Technol*, 42, 2168, 2008

Simulations of Accidental Releases during Fires

- Weight Loss Measurements
- ICP Analysis of Cd & Te Emissions
- ICP Analysis of Cd & Te in Molten Glass
- X-ray Fluorescence Micro-Spectrometry of Cd in Molten Glass

Based on protocols by the ASTM and UL **Expert Peer Reviews by**: BNL, US-DOE, 2004; EC-JRC, 2004 German Ministry of the Environment, (BMU), 2005 French Ministry of Ecology, Energy, 2009

XRF-micro-probing -Cd & Zr distribution in PV sample Unheated Sample -Vertical Cross Section

Fthenakis, Renewable and Sustainable Energy Reviews, 2004Fthenakis, Fuhrmann, Heiser, Lanzirotti, Wang, Progress in Photovoltaics, 2005

XRF-micro-probe -Cd distribution in PV sample 760 °C, Section taken from middle of sample

XRF-micro-probe -Cd distribution in PV sample 1000 °C, Section taken from middle of sample

XRF-micro-probing -Cd distribution in PV sample 1000 °C, Section taken from right side of sample

XRF-micro-probing -Cd distribution in PV sample 1100 °C, Section taken from middle of sample

Direct Atmospheric Cd Emissions from the Life-Cycle of CdTe PV Modules – Reference Case

Process			(g Cd/ton Cd*)	(%)	(mg Cd/GWh)
1. Mining of Zn ores			2.7	0.58	0.02
2. Zn Sme	elting/Refining		40	0.58	0.30
3. Cd purifi	cation		6	100	7.79
4. CdTe Production			6	100	7.79
5. CdTe PV Manufacturin			0.4*	100	0.52*
6. CdTe PV Operation			0.05	100	0.06
7. CdTe PV Recycling			0.1*	100	0.13*
TOTAL EN	IISSIONS				16.55

* 2009 updates

Fthenakis V. Renewable and Sustainable Energy Reviews, 8, 303-334, 2004

Cd Use in CdTe PV Production

- Cd is produced as a byproduct of Zn production and can either be put to **beneficial uses** or **discharged** into the environment
- Above statement is supported by:
 - US Bureau of Mines reports
 - Rhine Basin study (the largest application of Systems Analysis on Industrial Metabolism)

- Liewellyn T. Cadmium, **Bureau of Mines** Information Circular 1994, US Department of the Interior.
- Plachy J., U.S. Geological Survey Minerals Yearbook—2001, Cadmium—Chapter 17.
- Stigliani W, Anderberg S. Chapter 7. In: Ayres R, Simonis U, editors. Industrial metabolism.
 - Tokyo, Japan: The United Nations University Press; 1994.

Cd Flow in the Rhine Basin

Source: Stigliani & Anderberg, Chapter 7, Industrial Metabolism, The UN University, 1994

Rhine Basin: Cd Banning Scenario

Source: Stigliani & Anderberg, Chapter 7, Industrial Metabolism, The UN University, 1994

Cd Use & Disposal in the Rhine Basin: The effect of banning Cd products

- "So, the ultimate effect of banning Cd products and recycling 50% of disposed consumer batteries may be to shift the pollution load from the product disposal phase to the Zn/Cd production phase. This ... indicates that if such a ban were to be implemented, special provisions would have to be made for the safe handling of surplus Cd wastes generated at the Zn refineries!
- One possible option would be to allow the production and use of Cd-containing products with inherently low availability for leaching.
- The other option, depositing the Cd-containing wastes in safely contained landfills, has other risks "

Source: Stigliani & Anderberg, Chapter 7, Industrial Metabolism, The United Nations University, 1994

Recycling of Spent Modules

Resolves environmental issues related to end-of-life
Provides a source of materials

Recycling R&D at BNL: CdTe PV Modules

Fthenakis V. and Wang W., Separating Te from Cd Waste Patent No 7,731,920, June 8, 2010

Wang W. and Fthenakis V.M. Kinetics Study on Separation of Cadmium from Tellurium in Acidic Solution Media Using Cation Exchange Resin, Journal of Hazardous Materials, B125, 80-88, 2005

Fthenakis V.M and Wang W., Extraction and Separation of Cd and Te from Cadmium Telluride Photovoltaic Manufacturing Scrap, Progress in Photovoltaics, 14:363-371, 2006.

Studies of Te Availability for CdTe PV

- Green M., Improved estimates of Te and Se availability from Cu anode slimes and recent price trends, <u>Progress in Photovoltaics</u>, 14(8), 743-751, 2006.
- Green M., Estimates of Te and In prices from direct mining of known ores, <u>Progress in Photovoltaics</u>, 17(5), 347-359, 2009
- Fthenakis V.M., Sustainability of photovoltaics: The case for thin-film solar cells, <u>Renewable and</u> <u>Sustainable Energy Reviews</u>, 13, 2746-2750, 2009.
- **Zweibel K.,** The impact of Te supply on CdTe PV, <u>Science</u>, 328, 699, 2010
- Green M., <u>PV Velocity Forum: Supply and Economics in Thin-film PV Materials</u>, IEEE PVSC, Hawaii, June 23, 2010
- Fthenakis V., <u>PV Velocity Forum: Supply and Economics in Thin-film PV Materials</u>, IEEE PVSC, Hawaii, June 23, 2010
- Fthenakis V., Sustainability metrics for extending thin-film photovoltaics to terawatt levels. <u>MRS</u> <u>Bulletin</u>, 37(4), 425-430, 2012
- Marwede M., Reller A., Future recycling flows of Te from CdTe Pv waste, <u>Resources, Conservation</u> and <u>Recycling</u>, 69, 35-49, 2012
- Woodhouse M., et. al., Perspectives on the pathways for CdTe PV module manufacturers to address expected increase in the price of Te, <u>IEEEPV Journal</u>, 2012
- Houari Y., Speirs J., Candelise C., Gross R., A system dynamic model of Te availability for CdTe PV, <u>Progress in Photovoltaics</u>, 2013.

Te from Copper Sulfide ores*

Approximate Global Distribution in Copper Circuits

*Cu, Cu-Mo, Cu-Au & polymetallic ores, e.g., Pb-Cu-Zn-Ag ores

Ojebuoboh, Proceedings EMC, 2007; Nagaraj, 2010; Fthenakis update 2010

Tellurium for PV* from Copper Smelters

•Global Efficiency of Extracting Te from anode slimes increases to 80% by 2030 (low scenario); 90% by 2040 (high scenario)

* 322 MT/yr Te demand for other uses has been subtracted All the future growth in Te production is allocated to PV

Te Availability for PV: Primary + Recycled

Fthenakis V., *Renewable & Sustainable Energy Reviews* 13, 2746, 2009 Fthenakis V., *MRS Bulletin*, 37, 425, 2012

Te Utilization in thin-film PV

		2010		
PV	Metal	Required		
		(MT/GW)	Material Losses & Utilization	(%)
			Deposition loss	-30
Cdle	le	106	Collected for recycling	24
			Module scrap loss	-3.5
			Collected for recycling	3.1
			Loss in purification & CdTe synthesis	-7
			Total losses	-13.4
			Material Utilization	86.6

Fthenakis V., Renewable & Sustainable Energy Reviews 13, 2746, 2009

Te Needs in CdTe PV

		2010	Expected 2020
PV	Metal	Required (MT/GW)	Required (MT/GW)
CdTe	Те	106	38-74

Table I. Assumptions for thin-film photovoltaic (PV) efficiencies and layer thicknesses discussed in the text.

PV type		Efficiency (%)				Layer thickness (µm)				
	2010	2020		2010	2020					
		Conservative	Most likely	Optimistic		Conservative	Most likely	Optimistic		
CdTe	11.7	13	13.2	14	3	2.5	1.5	1		
CIGS	11.5	14	15.9	16.3	1.6	1.2	1.	0.8		
a-SiGe	6.8	9	9.7	10	1.2	1.2	1.1	1		

Fthenakis V., *Renewable & Sustainable Energy Reviews* 13, 2746, 2009 Fthenakis V., *MRS Bulletin*, 37, 425, 2012

CdTe PV Production Constraints

Annual (GW/yr)

Cumulative (TW)

Fthenakis V., *Renewable & Sustainable Energy Reviews* 13, 2746, 2009 Fthenakis V., *MRS Bulletin*, 37, 425, 2012

Conclusion

- Major PV Sustainability metrics include cost, resource availability, and environmental impacts.
- These three aspects are closely related; recycling spent modules will become increasingly important in resolving cost, resource, and environmental constraints to large scales of sustainable growth.
- Environmental sustainability should be examined in a holistic, life cycle, comparative framework.
 - Examples: Land use comparisons between coal and PV; Cd emission comparisons between coal and various PV technologies; risk comparisons among power life cycles
- Every PV technology has some EHS issues, but the industry is proactive in controlling them.
- The environmental issues related to CdTe PV are outweighed by the environmental benefits that PV displacement of fossil would generate.

email: vmf5@columbia.edu www.clca.columbia.edu www.pv.bnl.gov

CdTe PV Product Life – Accidental Releases

Leaching from shuttered modules

- 10 mm fragments -Rain-worst-case scenario- "leached Cd concentration in the collected water is no higher than the German drinking water concentration." (Steinberger, <u>Frauhoffer Institute Solid State Technology</u>, Progress in Photovoltaics, 1998)
- < 4 mm fragments "Leached Cd exceeds the limits for disposal in inert landfill but is lower than limits for ordinary landfills" (Okkenhaug, <u>Norgegian Geotechnical Institute</u>, Report, 2010)
- < 2 mm fragments "CdTe PV sample failed California TTLC and STLC tests" (Sierra Analytical Labs for the "Non-Toxic Solar Alliance", 2010)

All PV modules would fail the California tests c-Si for Ag, Pb, and Cu (ribbon), CIGS for Se; a-Si marginally for Ag Eberspacher & Fthenakis, 26th IEEEPVSC, 1997; Eberspacher 1998 We advocate for all PV modules to be recycled at the end of their life

Extraction Efficiencies from Slimes for Te, Se and In

Year	Extraction Efficiency (%)						
	Tellurium	Selenium	Indium				
2002	33	52	30				
2006	40	80	70-80				
2009	45	80	80				

Main reason for lower Te than Se recovery rates

• Several refineries recover Se but not Te

Anderson 2002; USGS 2004, 2006; Ogebuoboh, 2007; Fthenakis update 2010

Land Use in Energy Life Cycles

Example 2009); Fthenakis and Kim, Renewable and Sustainable Energy Reviews (2009); Burkhardt et al (2011) 39

Corrected Misrepresentations of PV Environmental Profiles

ExternE: Environmental Damage Costs

PV Risks

QUANTIFIED MARGINAL EXTERNAL COSTS OF ELECTRICITY PRODUCTION IN GERMANY ² (IN \in CENT PER KWH)								
Coal Lignite Gas Nuclear PV Wind Hydro								
Damage costs								
Noise	0	0	0	0	0	0.005	0	
Health	0.73	0.99	0.34	0.17 0	.45	0.072	0.051	
Material	0.015	0.020	0.007	0.002	0.012	0.002	0.001	
Crops	0	0	0	0.0008	0	0.0007	0.0002	

Total 0.46 0.08 0.75 1.01 0.35 0.17 0.05 Avoidance costs Ecosystems 0.78 0.05 0.04 0.03 0.20 0.04 0.04 Global Warming 1.60 2.00 0.73 0.03)4 0.03 0.33

Report to European Commission, 2004

Hirschberg et al. 2004 Paul Sherrer Institute Report

Corrected Misrepresentations of PV Environmental Profiles

ExternE: Environmental Damage Costs

QUANTIFIED MARGINAL EXTERNAL COSTS OF ELECTRICITY PRODUCTION IN GERMANY² (IN \in CENT PER kWH)

	Coal	Lignite	Gas	Nuclear	PV	Wind	Hydro
Damage costs							
Noise	0	0	0	0	0	0.005	0
Health	0.73	0.99	0.34 ().17(0.	.08	0.072	0.051
Material	0.015	0.020	0.007	0.002	0.012	0.002	0.001
Crops	0	0	0	0.0008	0	0.0007	0.0002
Total	0.75	1.01	0.35	0.17	0.46	0.08	0.05
Avoidance costs							
Ecosystems	0.20	0.78	0.04	0.05	0.04	0.04	0.03
Global Warming	1.60	2.00	0.73	0.03 (0.05)4	0.03

Fthenakis V.M. and Alsema E., Photovoltaics Energy Payback Times, Greenhouse Gas Emissions and External Costs: 2004-early 2005 Status, Progress in Photovoltaics Research and Applications, 14:275-280, 2006

Fthenakis V.M., Colli A., Arellano A., Kirchsteiger C., Ale B. Evaluation of Photovoltaics in a Comparative Context, Proceedings 21st European PV Solar Energy Conference, Dresden, Germany, 4-8 September 2006

Maximum fatalities/accident

PV Risks