Fourier-Based Fast Object Detection

Francois Fleuret

Joint work with Charles Dubout

S
r

Computer Vision and Learning group

IPA

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSA!

]
=018




Object detection
Sliding window

2/24



Object detection
Sliding window

2/24



Object detection
Sliding window

« Applies a binary classifier at every image position and scale
+ Detection transformed into an iterated binary classification
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Linear object detector
Learning a Classifier

The core component of this approach is a binary classifier trained
from data.
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SVM, HOG, AND DPM



Linear object detector
Invariant features (HOG)

Pedestrian template

i Bicycle template
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Objects are image positions on the HOG grid: scorey(x) = (w, X),
where x is the vector of features extracted from the subwindow at
the position of interest of size same as w.
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Deformable Part Model

The combination of HOG and a linear SVM is a powerful detector.
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The combination of HOG and a linear SVM is a powerful detector.
It is also the building brick of the “Deformable part model”.

Deformable Part Model
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Deformable Part Model
Root detection
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Deformable Part Model
Part detection

Ti(S1) =
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Deformable Part Model
Part detection
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Deformable Part Model
Part detection

10/24



Deformable Part Model
Final score
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COMPUTATIONAL CHALLENGE



Cost of linear filters

Challenge
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The HOG features can be seen as organized in planes, containing

distinct features from each grid cell.
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Cost of linear filters
Challenge

Typical settings uses 6 mixtures x 9 parts = 54 linear filters per
object class.
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Cost of linear filters
Challenge

Typical settings uses 6 mixtures x 9 parts = 54 linear filters per
object class.

For the standard PASCAL data-set, we have to detect 20 different
classes, which correspond to a reasonable practical situation (car,
pedestrian, bicycle, dog, etc.)

Total of 1080 filters and each filter is over 32 feature channels!
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Cost of linear filters

Challenge

1080 filters

L=
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Cost of linear filters

Challenge

L =

1080 filters

32 feat.
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FFT AND MAKING THINGS WORK



Cost of linear filters
Standard convolution process

Per image (R)

HOG
Image —_—>

/3 (1gb)

i Perimage x filter (LR)

Per filter (L)
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Per-feature ‘ + R
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Cost of linear filters
Standard convolution process

Per image (R)

HOG
Image —> 'Egg(;
/3 (1gb) /Qum : bor_toat
_______________________________________________________________________ i -5 | Per-feature
_ H score
/xaz ®
Filter
4

The computational cost to convolve a HOG image of size M x N
with L filters of size P x Q across K features is:

i Perimage x filter (LR)

_ S Detection

score

Carg = O(KLMNPQ)
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Cost of linear filters
Fourier based convolutions

Per image (R)

Per image x filter (LR)

—~
Per—feature FT; Per—feature * > Detection
Per filter (L) score score score
/xsz (K 42 (K

Filter FT, Fiiter
HOG || / > HOG
X32 (K) /xa 20

The computational cost to convolve a HOG image of size M x N
with L filters of size P x Q across K features is:

Crir = O(KMNlog MN) + O(KLMN) + O(KLMN log MN)

Forward FFTs Multiplications Inverse FFTs
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Cost of linear filters
Fourier based convolutions

Per image (R)

Per image x filter (LR)

Linearity
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The computational cost to convolve a HOG image of size M x N

with L filters of size P x Q across K features is:

Copt = O(KMN log MN) + O(KLMN) + O(KLMN log MN)

Forward FFTs Multiplications Inverse FFTs

~ O(KLMN)
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Cost of linear filters
What are typical numbers

K = 32 (number of HOG features)

L = 54 (number of filters)

M x N = 64 x 64 (size of the pyramid level)
P x Q = 6 x 6 (size of the filters)
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Cost of linear filters
What are typical numbers

K = 32 (number of HOG features)

L = 54 (number of filters)

M x N = 64 x 64 (size of the pyramid level)
P x Q = 6 x 6 (size of the filters)

Cstg = 2KLMNPQ ~ 490 MFlop
Crrr ~ 3KLMN + 2.5(K + KL)MN log, MN ~ 230 MFlop
Copt ~ 4KLMN + 2.5(K + L)MNlog, MN =~ 37 MFlop

A gain by a factor 13 compared to the standard pro-
cess, and 6 compared to the standard Fourier one!
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Cost of linear filters
Patchworks of pyramid scales

To use the FFT the image and the filter need to be of the same size.
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Cost of linear filters
Patchworks of pyramid scales

To use the FFT the image and the filter need to be of the same size.
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Cost of linear filters
Cache violations

L filters

R patchworks
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Cost of linear filters
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Cost of linear filters
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Cost of linear filters
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Cost of linear filters
Cache violations

L filters

R patchworks

Read L + R into cache = compute LR.
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Cost of linear filters
Results

Table: Pascal VOC 2007 challenge convolution time and speedup

chair cow table

aero bike bird boat bottle bus car cat
V4 (ms) 409 437 403 414 366 439 352 432 417 429 450
Ours (ms) 55 56 53 56 57 56 54 56 56 57 57
Speedup(x) 74 78 76 74 64 79 65 77 75 75 80
dog horse mbike person plant sheep sofa train tv mean
V4 (ms) 445 439 429 379 358 351 425 458 433 413
Ours (ms) 57 59 57 54 54 55 57 58 55 56
7.5 7.6 7.0 6.6 64 74 79 79 74

Speedup (x) 7.8
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Cost of linear filters

Results

Table: Pascal VOC 2007 challenge convolution time and speedup

aero bike bird boat bottle bus car cat chair cow table

409 437 403 414 366 439 352 432 417 429 450

V4 (ms)

Ours (ms) 55 56 53 56 57 56 54 56 56 57 57

Speedup(x) 74 78 76 74 64 79 65 77 75 75 80
dog horse mbike person plant sheep sofa train tv mean

379 358 351 425 458 433 413
54 55 57 58 55 56
79 79 74

V4 (ms) 445 439 429
Ours (ms) 57 59 57 54

Speedup (x) 7.8 75 7.6 7.0 6.6 64 74

« Error rate: identical to the baseline (32.3% AP)

23/24



Cost of linear filters
Results

Table: Pascal VOC 2007 challenge convolution time and speedup

aero bike bird boat bottle bus car cat chair cow table
V4 (ms) 409 437 403 414 366 439 352 432 417 429 450
Ours (ms) 55 56 53 56 57 56 54 56 56 57 57
Speedup(x) 74 78 76 74 6.4 79 65 77 75 75 80

dog horse mbike person plant sheep sofa train tv mean
V4 (ms) 445 439 429 379 358 351 425 458 433 413
Ours (ms) 57 59 57 54 54 55 57 58 55 56
Speedup (x) 7.8 75 7.6 7.0 6.6 64 74 79 79 74

« Error rate: identical to the baseline (32.3% AP)
« Numerical accuracy: better than the baseline (1.8 - 1078 vs.
2.4-1078 MAE)
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Conclusion

- Part-based models obtain state-of-the-art performance
at the price of a huge number of convolutions

- The FT is linear, enabling one to do the addition of the
convolutions across feature planes in Fourier space

« The computational cost becomes invariant to the filters’
sizes, resulting in a big speedup (x7.4 in experiments)
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The end
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