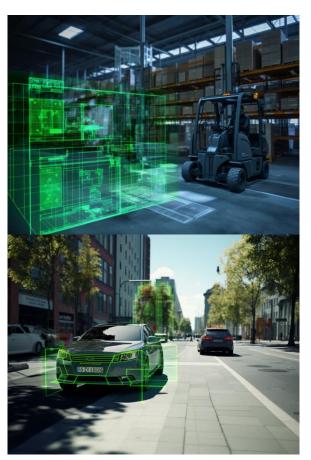
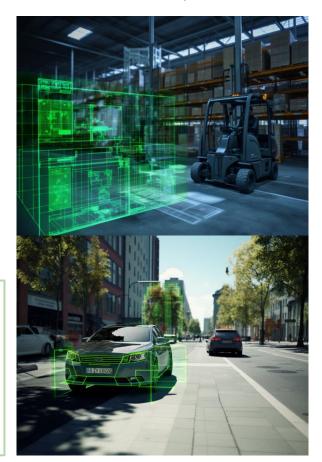

Enhancing safety with quality 2D/3D Vision


12.09.2023 Lucio Carrara lucio.carrara@fastree3d.com

Content

- Definition of safety in LiDAR sensors
 - Robotics
 - Automotive
- Features of a safe LiDAR
- Fastree3D Alopex LiDAR
 - Features
 - Functions
 - Architecture
 - Reference design and development kit

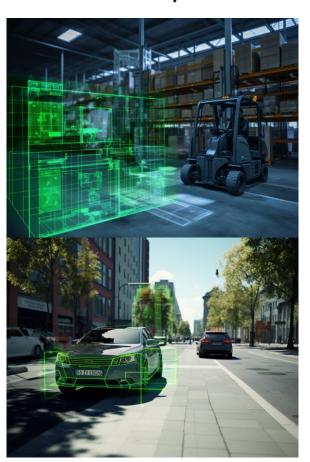
*fastree 3D



*fastree 3D

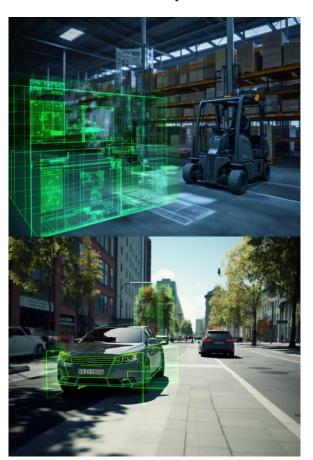
Safety for industrial and automotive LiDAR?

Accuracy and resolution


- → Measure the volume, shape, and movement of objects in 3D space.
- → Object recognition and classification
- → Object tracking

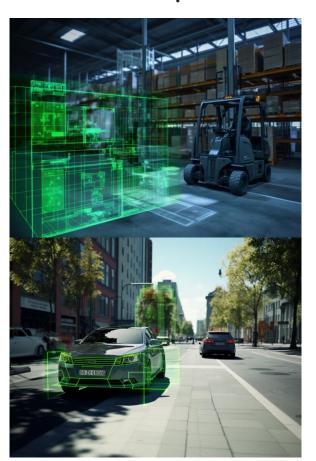
*fastree 3D

- Accuracy and resolution
- Repeatable measurements


- → Repeated measurements in the same conditions must yield the same results.
- → No need to repeat measurements
- → Decisions can be taken with a single snapshot
- → Low latency between measurement and action

*fastree 3D

- Accuracy and resolution
- Repeatable measurements
- Robustness


- → Resilience against external and environmental influences
- → Ambient light, sunlight
- → Optical interference (multicamera)
- → Ambient temperature

*fastree 3D

- Accuracy and resolution
- Repeatable measurements
- Robustness
- Quantifiable measurement quality

- → Evaluate the quality of each pixel measurement
- → In real time
- → Avoid false positives and false negatives

Better vision for safety and automation

*fastree 3D

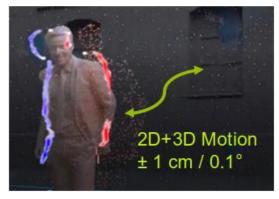
Fast

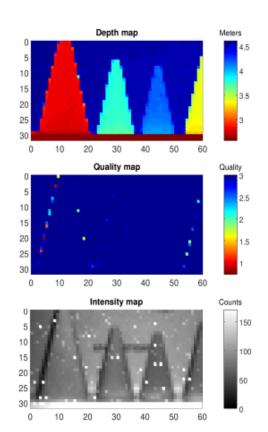
Emergency collision avoidance in city traffic

Low false detections under adverse visibility

Software-defined

Actionable 3D + 2D information for automation




Quality control

On-chip processing

Rich measurement information: 3D + 2D + QoR * fastree 3D

Depth map (3D):

Matrix of pixel data providing distance to objects.

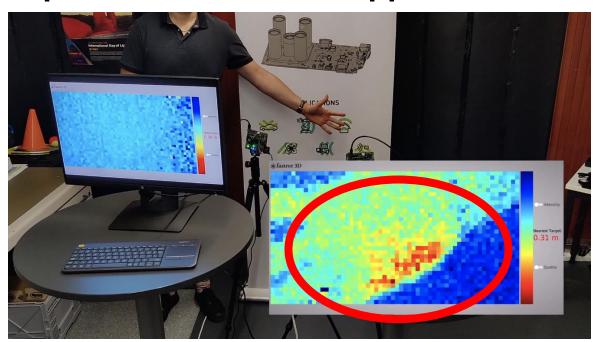
Quality map:

 Matrix of pixel data assessing the reliability of the distance information (0: low, 3: high). False positives and false negatives avoided.

Intensity map (2D):

Gray-scale image of the scene.

Ambient Light Suppression


Major issue in outdoors applications

- SNR reduction
- Saturation
- Dynamic range!

Countermeasures are necessary to operate up to 100 klux ambient illumination

- → Optical bandpass filters
- → ND filters
- → Sensitivity modulation
- → Time gating and exposure time
- → Photon Coincidence
- → Depth resolution

Optical Interference Suppression

- 1 Paper published
- 2 Patents

*fastree 3D

Two LiDAR in the same room.

- Wrong distance measurement
- No a-priori indication of interference
- Ghost images
- Missing images

FLISS algorithm

- No interference (-51dB)
- No coordination
- No communication
- Arbitrary number of devices
- Works with any LiDAR

Alopex LiDAR key specifications

* fastree 3D

➤ Pixel resolution: 256 x 64 (512 x 128 super-resolution mode available)

Depth resolution: 1 cm

➤ Framerate: < 300 fps

Control interface: I2C (I3C)

Data interface: MIPI CSI

Other features

- Ambient light suppression (60 klux)
- Optical interference suppression (multicamera ready)
- Software-defined behaviour
- Integrated laser controller (4 independent channels)
- Rolling shutter and global shutter
- ➤ Embedded Quality of Result
- > Intensity imaging
- Region of interest

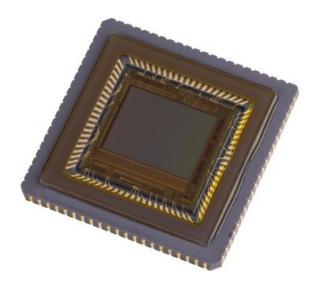


Figure for illustrative purposes only, not depicting the actual product.

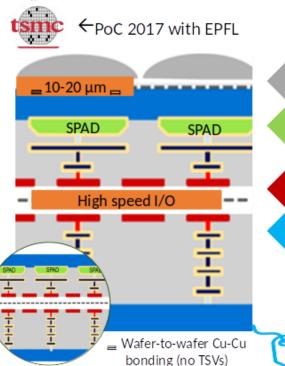
Alopex LiDAR functions

- > Photodetection and ToF measurement
 - SPAD-based pixels and integrated TDCs

- Software-controlled
 - Real-time access to configuration and operation parameters, I2C/I3C

- Laser control
 - Programmable sequencer, synchronization, 4 independent sources

- > Integrated data processing
 - Point cloud, intensity, QoR



- Data interface
 - Standard MIPI CSI v2.1

State of the art technology partnerships

* fastree 3D

Hybrid bonded circuit

Micro-lenses

Single-photon detection (SPAD)

Pixel- connections

Processor chip

BOM

- Timestamping
- S/N processing
- Laser control

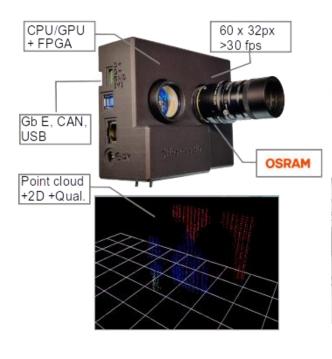
Industrial support

We support intelligent imaging and sensing Avi Strum, GM, Sensors

 We foresee industrial market opportunities. Markus Rossi, VP Innovation

amu osra

IP block support (I/O, PLL)



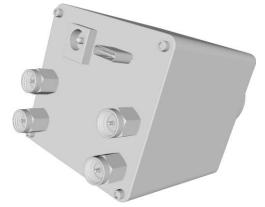
Falcon Hardware Development Kit

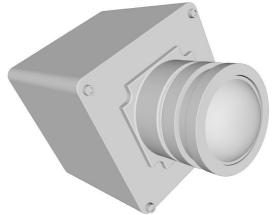
*fastree 3D

Development Kit

ADAS engineering

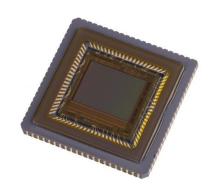
Industrial safety chip 2023-2024 (NRE+ samples)

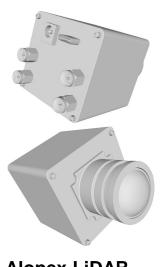



Alopex reference design

- Fully featured Alopex LiDAR chip
- 5x5x5 centimeter form factor alu case
- Integrated power and bias generation
- Up to 4 independent external illuminators
- Option for an integrated internal illuminator
- Standard C(S)-mount for optics
- Standard I3C control interface
- Standard MIPI CSI data interface
- DC 12V power input

Released: Q3 2024





Open project areas

*fastree 3D

Alopex IC

- → Specifications
- → Certification
 - > SIL-x
 - > ASIL-x
 - > ...

Falcon Devkit

- → Pilot projects
 - > Industrial
- automation
 - > Robotics
 - > Automotive

Alopex LiDAR

- → Early adopters
- → System integration
- → Eye safety
- → Embedded software

Thank you for your attention!

12.09.2023 Lucio Carrara lucio.carrara@fastree3d.com