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Technologies in focus at CSEM
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CSEM at a glance

437
Persons

43
New 
ventures

175
Industrial
clients

203
Patent 
families

64
European
projects

43
Nationalities

83.0
Turnover
(mio CHF)
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A public-private partnership

• Flexible and professional

• Industry friendly IP approach

14 %
Swiss confederation
(EPFL)

13 %
Neuchâtel – City & Canton

73 %
Private Organizations

shareholding
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From photon in to information out

Modal
0.5 dm3

Tegra TX2

Max 7 W 
Wired / Battery

Cost: ~$1000 / 10 U

Pupil
8 cm3

ARM H7

Max 0.3W 
Wired / Battery

Cost: ~$200 / 100 U

Witness
2 cm3

Risc-V + Cust ML

Max 2mW
Battery / Solar

Cost: ~$10 / 10 kU

0
1
2
3
4
5
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50 billion IoT : Now is the time for unlimited autonomy

Time (years)

Energy required to perform a given task

Energy that can be harvested from
surroundings

Gene’s Law: ~1.3x/year
Moore’s law: ~1.6x/year

REDO slide with Hierachicial computing

“Moore”

“More than Moore”

About time!



VISION ML NEEDS PHOTONICS

Advanced miniaturized IoT systems
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Witness: Image recorder powered by ambient light

Scene capture: 
- QVGA (320x320), 107° FOV

- When light available @ max 1fps

- Based on motion detection

Mechanical: 
- 8cm rounded-square

- 0.6mm thick flexible sticker

- 4mm thick camera coin

Electric: 

Expected Achieved

USB Dock 
to download 

captured images

1mW Power Budget
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Optics photonics to help Machine Learning

~ 1.35 mm

Equalize illumination for all AOI, avoid
double images and choose lowest
aberration rays by applying an 
obscuration and an aperture.

For a first prototype fabricated by
diamond turning a total track length
of TOTR = 1.35 mm is demonstrated
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CTI Feasability ASICs à Ergo: ULP HDR IoT Imager (2020Q1)

• Resolution: 320 x 320 (640 x 640) pixels

• Dynamic range: at least 120 dB intra-scene

• Power budget: < 700 µW (1 mW) at 10 fps

• SNR: 20 dB at 5 lux and 25 °C

• Interface: 1 to 8 bits SPI (HyperBus)

• Persistence: Image stored on-chip

• Cost in production: < USD 2

IoT
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Witness: Software

The ERGO imager stores the picture internally:  there is no need for 
external memory

IoT

IS

Detection of scene activity

Motion detection is 
performed 
on subsampled images

Full resolution image is 
processed by chunks of 
8 lines (MCU internal 
memory is 64kB only)

Only changed parts are 
compressed and stored 
in the flash memory 



ML for OPTICS

Image Recognition



13

Image restoration

Natural image Low-res Bayer 
pattern

(mosaic)

Blurry Noisy

Observations are degraded compared to sharp (clean) images 
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Image restoration: Supervised, End-to-End

Lo
w-
res

Mosai
c

Blurry

Noisy

clean image reconstruction
network

Applying corruptions
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Image restoration: Supervised, End-to-End

Noisy / 14.76dB BM3D / 26.21dB DnCNN / 26.92dB

Gaussian noise with 𝜎 = 50
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Real camera noise removal

• Hand-crafted models such as BM3D still outperform CNNs!
[Plötz & Roth, Benchmarking Denoising Algorithms with Real Photographs, 2017]
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Real camera noise removal

• Hand-crafted models such as BM3D still outperform CNNs!

[Plötz & Roth, Benchmarking Denoising Algorithms with Real Photographs, 2017]

• BM3D: Assumption about image sparsity

• CNN: Assumption about noise distribution

Reference patch

Matched patches
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• Given 𝑦, maximize posterior probability

• log 𝑝 𝑦 𝑥 : data term (likelihood)

• How well does the solution explain the observed data

• log 𝑝(𝑥) : image prior

• Probability of the solution

argmax
1

𝑝(𝑥|𝑦) = argmax
1

𝑝 𝑦 𝑥 𝑝(𝑥) =

argmax
1

log 𝑝 𝑦 𝑥 + log 𝑝(𝑥)

Image restoration: Maximum a-Posteriori
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Image restoration: Denoising Autoencoder (DAE)

input image

DAE

Score matching

Image restoration using autoencoding priors [Bigdeli and Zwicker, 2017]
Deep mean-shift priors for image restoration [Bigdeli et al., 2018]
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Image restoration: Denoising Autoencoders

2D Spiral manifold and
observed samples

Mean-shift vectors
Learned by DAE

Smoothed density from
observed samples

Image restoration using autoencoding priors [Bigdeli and Zwicker, 2017]
Deep mean-shift priors for image restoration [Bigdeli et al., 2018]
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Image restoration: Denoising Autoencoder (DAE)

input image

DAE

data fidelity 

reconstruction
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Image restoration: Gradient descent to find MAP

Natural image
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Image restoration: Removing blur

Dataset: Kodak Image Suite, 2013

Blurry and noisy
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Image restoration: Removing blur

Dataset: Kodak Image Suite, 2013

Blurry and noisy
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Image restoration: image up-sampling (super-resolution)
Deep mean-shift priors for image restoration [Bigdeli et al., 2018]
Image Denoising via MAP estimation using Deep Neural Networks  [Bigdeli and Süsstrunk, 2019]

4x down-sampled

Dataset: Set14, Zeyed et al, 2010
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Image restoration: image up-sampling (super-resolution)
Deep mean-shift priors for image restoration [Bigdeli et al., 2018]
Image Denoising via MAP estimation using Deep Neural Networks  [Bigdeli and Süsstrunk, 2019]

Our solution

Dataset: Set14, Zeyed et al, 2010
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Image restoration: Comparing against end-to-end
Image restoration using autoencoding priors [Bigdeli and Zwicker, 2017]

• DNCNN: trained on ×2,×3,×4
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Image restoration: Hole-filling

Image restoration using autoencoding priors [Bigdeli and Zwicker, 2017]
Deep mean-shift priors for image restoration [Bigdeli et al., 2018]
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Image restoration: Comparing against end-to-end
Deep mean-shift priors for image restoration [Bigdeli et al., 2018]

Dataset: Levin et al., 2007
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Image restoration: ADMM -> 70x faster
Image Denoising via MAP estimation using Deep Neural Networks  [Bigdeli and Süsstrunk, 2019]
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Image restoration: Summary

• Unsupervised training  for one network
• Several restoration tasks
• Without degradation parameters at train time
• Optimizing degradation parameters at test time

ü Can be used to learn the optics error
ü Can be used for noise modeling
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0 ENERGY COMPUTING: Convolution optics as a Neural Network Layer

I 𝒙 = ; 𝐽
1
𝛼
𝒙 − @𝒖 𝐾 −
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𝛽
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Convolution measurment
crosspinhole



TRAINING

INFERENCE

conv1

pool1

conv
2

output

pool2

Print mask
from weights
after training

poo
l
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poo
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Workflow
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Digits recognition (MNIST) filters of the 1st layer

Inkjet printing
120 µm 

resolution
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Objective lenses (f = 27 mm)

mask

Set-up

20 cm

1c
m

Image plane

Printed mask

Sensor

Output

Input

Front lens (f = 8.5 mm)
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Proof of concept



Thank you


