Photonics-Workshop: «Artificial Intelligence in Photonics»

Fachanlass Swissmem-Fachgruppe Photonics in Zusammenarbeit mit Swissphotonics **Dienstag, 3. September 2019, 13.30 bis ca. 17.30 Uhr**

Fachhochschule Nordwestschweiz FHNW, Campus Brugg-Windisch, Raum 6.-1D09 im Gebäude 6, 5210 Windisch

Photonics for AI or AI for Photonics

Andrea Dunbar FHNW, Campus Brugg-Windisch 3 September 2019

Technologies in focus at CSEM

" csem

CSEM at a glance

(3)

A public-private partnership

- Flexible and professional
- Industry friendly IP approach

73 % Private Organizations

From photon in to information out

* CSEM showcase

(5)

REDO slide with Hierachicial computing

50 billion IoT : Now is the time for unlimited autonomy

6

" csem

VISION ML NEEDS PHOTONICS

Advanced miniaturized IoT systems

Witness: Image recorder powered by ambient lic

Scene capture:

- QVGA (320x320), 107° FOV
- When light available @ max 1'
- Based on motion deter

Mechanico[,]

- 8cm

" CSem

- *uole sticker* - 0.6n
- <u>- 4mm .</u> <u> camera coin</u>

Expected

Achieved

8

Optics photonics to help Machine Learning

Equalize illumination for all AOI, avoid double images and choose lowest aberration rays by applying an obscuration and an aperture.

9

For a first prototype fabricated by diamond turning a total track length of TOTR = 1.35 mm is demonstrated

CTI Feasability ASICs \rightarrow Ergo: ULP HDR IoT Imager (2020Q1)

- Resolution: 320 x 320 (640 x 640) pixels
- Dynamic range: at least 120 dB intra-scene
- Power budget: $< 700 \,\mu\text{W} (1 \,\text{mW})$ at 10 fps
- SNR: 20 dB at 5 lux and 25 °C
- Interface: 1 to 8 bits SPI (HyperBus)
- Persistence: Image stored on-chip
- Cost in production: < USD 2

10

«CSem

Witness: Software

The **ERGO** imager stores the picture internally: there is no need for external memory

Motion detection is performed on subsampled images

Full resolution image is processed by chunks of 8 lines (MCU internal memory is 64kB only)

Only changed parts are compressed and stored in the flash memory

ML for OPTICS

Image Recognition

Observations are degraded compared to sharp (clean) images

Image restoration: Supervised, End-to-End

Lo

14

Image restoration: Supervised, End-to-End

Gaussian noise with $\sigma = 50$

(15)

Real camera noise removal

• Hand-crafted models such as BM3D still outperform CNNs!

[Plötz & Roth, Benchmarking Denoising Algorithms with Real Photographs, 2017]

16

Real camera noise removal

- Hand-crafted models such as BM3D still outperform CNNs!
 - [Plötz & Roth, Benchmarking Denoising Algorithms with Real Photographs, 2017]
- BM3D: Assumption about image sparsity
- CNN: Assumption about noise distribution

" CSem

Matched patches

Image restoration: Maximum a-Posteriori

• Given *y*, maximize posterior probability

$$\arg\max_{x} p(x|y) = \arg\max_{x} p(y|x)p(x) =$$
$$\arg\max_{x} \log p(y|x) + \log p(x)$$

- log p(y|x): data term (likelihood)
 - How well does the solution explain the observed data
- $\log p(x)$: image prior
 - Probability of the solution

« csem

Image restoration: Denoising Autoencoder (DAE)

Image restoration using autoencoding priors [Bigdeli and Zwicker, 2017] Deep mean-shift priors for image restoration [Bigdeli et al., 2018]

Image restoration: Denoising Autoencoders

Image restoration using autoencoding priors [Bigdeli and Zwicker, 2017] Deep mean-shift priors for image restoration [Bigdeli et al., 2018]

Image restoration: Denoising Autoencoder (DAE)

Image restoration: Gradient descent to find MAP

22)

Image restoration: Removing blur

Blurry and noisy

Dataset: Kodak Image Suite, 2013

Image restoration: Removing blur

24)

Blurry and noisy

Dataset: Kodak Image Suite, 2013

Image restoration: image up-sampling (super-resolution)

Deep mean-shift priors for image restoration [Bigdeli et al., 2018] Image Denoising via MAP estimation using Deep Neural Networks [Bigdeli and Süsstrunk, 2019]

4x down-sampled

Image restoration: image up-sampling (super-resolution)

Deep mean-shift priors for image restoration [Bigdeli et al., 2018] Image Denoising via MAP estimation using Deep Neural Networks [Bigdeli and Süsstrunk, 2019]

26

Dataset: Set14, Zeyed et al, 2010

" csem

Image restoration: Comparing against end-to-end

Image restoration using autoencoding priors [Bigdeli and Zwicker, 2017]

• DNCNN: trained on x2,x3,x4

Method	$\times 2$	$\times 3$	$\times 4$	$\times 5$
Bicubic	28.53	25.92	24.44	23.46
SRCNN	30.52	27.48	25.76	24.05
TNRD	30.53	27.60	25.92	24.61
VDSR	30.72	27.81	26.16	24.01
DnCNN-3	30.99	27.93	26.25	24.26
IRCNN	30.79	27.68	25.96	24.73
DAEP (Ours)	31.07	27.93	26.13	24.88

Image restoration: Hole-filling

Masked 70% of Pixels 6.13dB

Image restoration using autoencoding priors [Bigdeli and Zwicker, 2017] Deep mean-shift priors for image restoration [Bigdeli et al., 2018]

Image restoration: Comparing against end-to-end

Deep mean-shift priors for image restoration [Bigdeli et al., 2018]

Dataset: Levin et al., 2007 **# CSEM**

Image restoration: ADMM -> 70x faster

Image Denoising via MAP estimation using Deep Neural Networks [Bigdeli and Süsstrunk, 2019]

30)

Image restoration: Summary

- Unsupervised training for one network
- Several restoration tasks
- Without degradation parameters at train time
- Optimizing degradation parameters at test time
 - Can be used to learn the optics error
 - Can be used for noise modeling

0 ENERGY COMPUTING: Convolution optics as a Neural Network Layer

• Field intensity on I(x)

$$I(\boldsymbol{x}) = \int J\left(\frac{1}{\alpha}\boldsymbol{x} - \overline{\boldsymbol{u}}\right) K\left(-\frac{1}{\beta}\overline{\boldsymbol{u}}\right) w\left(\frac{1}{\beta f_1}\overline{\boldsymbol{u}}\right) d\overline{\boldsymbol{u}} \quad \longrightarrow \quad I(\boldsymbol{x}) = \left(J\left(\frac{1}{\alpha}\cdot\right) * \frac{1}{(\beta f_1)^2} K\left(-\frac{1}{\beta}\cdot\right) w\left(\frac{1}{\beta f_1}\cdot\right)\right) (\boldsymbol{x})$$

Scaled convolution between the field J(x) and K(x)

Convolution measurment

pinhole

cross

Digits recognition (MNIST) filters of the 1st layer

(35)

Set-up

Printed mask

Output

3

Input

Front lens (f = 8.5 mm)

Proof of concept

Thank you

