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Friction between two hard surfacesFriction between two hard surfaces

Gliding: macro- and microcontacts Friction domains, Stribeck curve:
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Gliding surfacesGliding surfaces



4
4

MicrostructuringMicrostructuring??
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Interactions (I)Interactions (I)

Laser energy coupling
- focussed laser beam: E field
- electron gas excitation
- accelerated free electrons

Energy transfer sequence
- electron-electron collisions
- electron-lattice interactions
- thermalization of incident energy
- heat flow

Specific interaction times

1 ps 100 ps

electron‐electron electrons‐lattice

100 fs 1 ns 10 μs10 ns 100 μs cw10 ps

debrisdebris--free processingfree processing drillingdrilling fine cuttingfine cutting cutting, weldingcutting, welding
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Proc. SPIE 5339 (2004)

Interactions (II)Interactions (II)
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Coating

Laser ablation

Outcome

Laser patterning: direct processingLaser patterning: direct processing
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Laser ablation

Coating

Outcome

Replicating

Laser patterning: indirect processingLaser patterning: indirect processing
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10 μm 20 μm

LaserLaser--ablated pores in stainless steelablated pores in stainless steel
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• alloyed steel
• < 1 µm layer
• increased              

hardness

CrossCross--section (etched)section (etched)



12

Laser patterned, polished, DLC coated surface:
general view and detail 

150 µm

Indirect processing: DLC on 52100 SteelIndirect processing: DLC on 52100 Steel

Laser patterned steel surface (not polished)

150 µm150 µm150 µm
30 µm
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Structuring:
- WC-10 Co 
- 6 pulses
- 30-40 µJ

Postprocessing: 
- gentle polishing
- short cleaning 

Coating:
- CVD
- Ti(C,N)
- thickness: 3-4 µm

50 μm 50 μm

Indirect processing: Indirect processing: TiCNTiCN on WCon WC--CoCo
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Film: 

TiCN

Substrate: 

WC – 10 Co

Pulses:

100 / pore

Pulse duration:

100 fs

Fluence:

2 J/cm2

Direct processing, Direct processing, fsfs pulses (I)pulses (I)
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100 X 2 J/cm2, 100 fs

Direct processing, Direct processing, fsfs pulses (II)pulses (II)
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Load: 

50 N – 1000 N

Rise Time:

30 s

Pressure:

250 N/mm2

Stroke: 

2 mm

Frequency:
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Lifetime increasing through laser patterning (coated)Lifetime increasing through laser patterning (coated)
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Ti

N

Fe
50 μm

Surface after Surface after tribotribo--teststests



21

Tribological tests, DLC, indirect patterningTribological tests, DLC, indirect patterning
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MicroasperityMicroasperity LubricationLubrication

Journal of Lubrication Technology (1968) 351

● photoengraving process

● etching of smooth-lapped stators

„Furthermore, from the load support observed, it is apparent that the 
use planned microasperities is an effective method for lubricating 
the parallel surfaces of face seals and thrust-bearing surfaces.”
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Lubricated friction of laser microLubricated friction of laser micro--patterned sapphire flatspatterned sapphire flats

Tribology Letters 4 (1998) 237–241

● crucial effect on the endurance
of lubricated sliding 

● sufficiently fine grooves might 
lead to steady-state conditions
with virtually no wear and 
seemingly unlimited sliding

● Each particular application 
requires its own optimization.
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Protective head parkingProtective head parking

● precisely placed landing area, 
with controlled roughness 

● smooth data area, 
where high density data is written. 

● landing area: laser-produced bumps 
- of uniform size and height
- with defined patterns
- to minimize wear and friction due to repeated head landing 

● e.g., Ni–P-plated Al–Mg substrates 

● molten pool, instantaneous solidification
discrete topographical features

Wear 230 (1999) 11-23

©1999 Western Digital
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Laser surface texturing for hydrodynamic lubricationLaser surface texturing for hydrodynamic lubrication

● SiC cylinder sliding on a SiC disk

● in water

● increase of critical load: 20%

● effect maintained between
400 and 1200 rpm

Tribology International 34 (2001), 703–711

gd1
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gd1 Mechanical seals are used for the sealing of rotating shafts against a stationary housing, e.g. in pumps and agitators. The stationary" part of 
the seal is usually located at the housing, the rotating" part is fixed on the shaft. The high-precision face-machined sliding faces rotate axially 
in opposition. The sliding faces are pressed against each other by means of spring force, thus preventing the opening of the seal at stand-still. 
The seal faces are statically sealed against the housing and the shaft by secondary seals (O-rings). With the entry of the pumped medium into 
the minimal sealing gap a lubricating film is generated and the sealing effect is thus obtained.
Gabriel Dumitru; 18.03.2009
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Laser surface texturing for bearing ringsLaser surface texturing for bearing rings
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Laser texturing of seals: transitions in lubrication regimeLaser texturing of seals: transitions in lubrication regime

Tribology International 38 (2005) 219–225

● expand the range of the
hydrodynamic lubrication regime

● reduce the friction coefficient 
under similar operating conditions

● reduce friction in oil-lubricated 
tribological under a boundary 
lubrication regime



29

Laser surface texturing for adaptive solid lubricationLaser surface texturing for adaptive solid lubrication

● micrometer sized reservoirs on hard TiCN coatings 
● solid lubricants, e.g. based on MoS2 and graphite 
● lifetime increase: 10 X

Wear 261 (2006) 1285–1292
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LaserLaser--induced induced nanostructuringnanostructuring ((fsfs) on ) on DLCDLC filmsfilms

Applied Surface Science 254 (2008) 2364–2368

● DLC surfaces, 
nanostructured with fs-laser pulses

● MoS2 layer to tune the friction
properties of the nanostructured
DLC surface, where the smallest

● µmin = 0.02
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Laser honing (I)Laser honing (I)
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Laser honing (II)Laser honing (II)

● IR laser 

● ns pulses 
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Laser texturing setup, piston ringsLaser texturing setup, piston rings
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20 mm

Piston rings: resultsPiston rings: results



35

Tool life enhancement in cold forgingTool life enhancement in cold forging

Journal of Engineering and Manufacturing 220 (2006) , 27–33

● excimer laser

● mask imaging
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Laser texturing, uncoated cutting toolsLaser texturing, uncoated cutting tools

● UV laser: 355 nm 

● 15 – 25 ns

● 8 µm
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Texturing setup (tool)Texturing setup (tool)

Beam

Lens

Tool Mirror

Step motor

X-Y table
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Laser beam 
IN

Y-axis

A-axis

B-axis

X-axis

ChuckTelescope

Laser beam 
OUT (90°)

Laser patterning: machineLaser patterning: machine
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- WC-Co tool
- TiCN layer 
- indirect 
processing

- spot size: 15 μm
- 200’000 pores

- reference:    
500’000 parts

20 mm

Laser patterned toolLaser patterned tool
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Tool after 13 millions parts (26 x Tool after 13 millions parts (26 x TTrefref ))
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Tool after 13 millions partsTool after 13 millions parts
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Tool after 34 millions parts (68 x Tool after 34 millions parts (68 x TTrefref ))
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Tool after 34 millions partsTool after 34 millions parts

EDX: W

EDX: Fe
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Case study: resultsCase study: results

● Tool throughput: 49.6 mio. Parts
● Lifetime increase: 100 X

● Damages: randomly distributed
● Laser structure: 

- no crack points 
- no delamination centers

● EDX-Analyses on dimples:
- lubricant reservoirs 
- particle traps
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Background 

- reducing wear / friction

- increasing lifetime of mechanical parts

Engineered tribological surfaces

- needed in a large variety of cases

- laser beam, a tool with certain advantages 

Laser texturing …

… improves tribological behaviour of coated surfaces.

… does not compete, but completes coating procedures.

… can induce controlled structure changes.

Each particular application requires its own optimization.

ConclusionsConclusions
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