Laser micromachining with fs-lasers: demands and trends

B. Jäggi, <u>P. Chavanne, </u>D. Bruneel, A. Kupisiewicz

PRECISION LASER SOLUTIONS

Lasea at a glance

Lasea at a glance

Lasea SA (60 people) Liege Science Park BELGIUM

Lasea Switzerland SA (2 p.) Biel/Bienne SWITZERLAND

Lasea France SAS (8 p.)

Cité de la Photonique FRANCE

- Belgium: Headquarter, R&D, integration, software, sales and applications lab
- Switzerland: Sales and applications lab
- France: Development of the modules, sales and applications lab
- USA: Sales and applications lab

Lasea US Inc (2 p.) San Diego, California USA

Workstations

- ✤ From small table top solutions (LS2) to full automated 24/7 production machines (LS5)
 - o Based on granite tables (except LS2)
 - o Modular design
 - o Combination with robot possible (LS4,LS5)
 - Vision systems (shape recognition)
 - Axes systems (linear and rotary drives)
 - o Fume extraction
 - o Metrology options

Applications

Applications: Life Science (Pharmaceutical, Hospitals, Medical Devices)

Anti mix-up marking

Track&Trace marking

Laser Drilling and Cutting

Plastic welding

Applications: Luxury (Watches)

✤ Laser engraving

Micro cavities in stainless steel

Applications: Luxury (Watches)

✤ Laser engraving

✤ Laser texturing

"Côtes de Genève" (stainless steel)

"Perlage" (copper)

"Colimaçonnage" (brass)

✤ Laser engraving

✤ Laser texturing

Applications

Applications: Luxury (Watches)

✤ Laser engraving

✤ Laser texturing

✤ Laser drilling

Holes in ceramic

Holes in glass

Applications: Luxury (Watches)

- ✤ Laser engraving
- ✤ Laser texturing
- ✤ Laser drilling
- ✤ Laser cutting

"Applique" (mother of pearl)

"Escapement wheel" (metal)

"Movement component" (phynox 500 μm)

Throughput

Throughput

Increasing throughput is key for industrial applications:

- Today's high power USP laser systems:
 - 100 W regime (industrial) [1]
 - kW regime (scientific) [2,3]
 - Pulse energy of several 100 µJ
- Moderate fluences to treat metals
 - **Optimum peak fluence** (most energy efficient point) of some J/cm²

 C. Hoenninger, J. Akhil, Laser Technik Journal 13 (2), (2016) 56
P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, R. Proprawe, Opt. Letters 35 (24), (2010) 4169
J.-P. Negel, A. Voss, M. Abdou Ahmed, D. Bauer, D. Sutter, A. Killi, T. Graf, Opt. Letters 38 (24), (2013) 5442

Throughput, Lasea's solutions

Increasing throughput is key for industrial applications:

- Increasing E_p (increasing P_{av} at constant f_{rep})
 - Beam splitting using the LS-Split
 - dividing the high energy beam into two beams
 - 2 galvo scanners simultaneously

Throughput, Lasea's solutions

Increasing throughput is key for industrial applications:

- Increasing f_{rep} together with P_{av} (constant ϕ_0) and v_{scan} for constant pulse overlap
 - Polygon line scanners

Throughput - Pulse bursts

Increasing throughput is key for industrial applications:

- Increasing the throughput using pulse bursts
 - $\Delta t_L = 1/f_L = 10 \ \mu s \ (100 \ \text{kHz})$
 - $\Delta t_B = 1/f_S = 25 \text{ ns} (40 \text{ MHz})$

Stainless steel AISI 304

Specific removal rate rests constant up to a 3-pulse burst

If repetition rate is fixed to 100 kHz, higher ablation rate using pulse bursts

Engraving stainless steel with pulse bursts

Optimized parameter for engraving AISI 304 using pulse bursts:

Engraving stainless steel with pulse bursts

- Optimized parameter for engraving AISI 304 using pulse bursts:
 - No over-engraving
 - o No burr
 - $\circ~$ Ra \approx 0.3 μm , measured on a random line

Engraving stainless steel with pulse bursts

Engraving with no hole formation on the surface!

Engraving with single pulses:

- $\circ~$ 190 layers for a depth of 40 μm
- Engraving with pulse bursts:
 - $\circ~$ 44 layers for a depth of 40 μm
- Time reduction of a factor of 4

♦ 90° angle of incident and no variation in surface height

• Constant spot diameter, i.e. constant fluence on the workpiece

- Cut of 3D geometries
 - o Nitro cellulose ball
 - o Extremely flammable
 - Melting temperature : 80 °C
 - \circ Thickness : 400 μ m

Conclusions

Lasea is a laser solution provider

- Increasing throughput by:
 - o Splitting the high energy beam
 - Fast scanning
 - Pulse bursts (reduce the machining time of a factor of 4 for stainless steel)
- Multi-axis processing is needed for 3D parts

✤ 7 axis simultaneously processing for seamless engraving on 3D parts

Thank you for your attention

Lasea sa

Liege Science Park BELGIUM

Lasea Switzerland SA Rue du Soleil 11 2504 Biel/Bienne SWITZERLAND

Contact: pchavanne@lasea.com +41 (0)32 341 19 60

Visit us at our booth G95

