

Parylene Coatings:

Medical applications and R&D trends

EPHJ - Photonics 4 Luxury Coatings, June 2017

F.BOURGEOIS, PhD, R&D Project Manager

Comelec SA, rue de la Paix 129, 2301 La Chaux de Fonds, Switzerland

- 1. Comelec SA : Company Profile
- 2. Parylene Coatings main features
- 3. Medical applications
- 4. R&D projects
 - High barrier multilayer coatings
 - Anti-bacterial Parylene Coating
 - Parylene LASER paterning

1. Company profile

- □ Founded in 1979, European leader in Parylene Coating.
- □ Coating service provider and equipment manufacturer
- □ 20 People
- □ 10 coaters at Comelec / 2000 batches deposited per year
- □ 55 equipments worldwide
- Strong involvement in R&D projects :
 - ✓ European projects :

✓ CTI (Swiss funded projects)

Comelec SA, rue de la Paix 129, 2301 La Chaux de Fonds, Switzerland

2. Parylene main features

□ An unique polymer process...

- Process patented in 1967 (Gorham, USA) => first application : PCBs in 70's (Union Carbide Corp.)
- Vacuum Process known as "Vapor Deposition Polymerization", very similar to CVD.
- Typical thicknesses : 1-50 µm (control possible from 50 nm)

...with unique advantages

- Very high penetration ability : near 100% conformal coating
 => coating of very complex 3D items is possible
- o Near room temperature process
 - => stress free coating

=> no damage on heat sensitive parts (often at the very end of the manufacturing line)

Parylene success is not only a question of material properties, this is also due to a unique process !

2. Parylene main features

☐ 2 kinds of tools to deposit Parylene coatings:

Static Coating

- Almost no size / shape limitation
- ✓ Fragile parts handling
- Manual disposal of the parts (time consumming)

Tumble Coating

- No contact points
- Very large volume production / very low cost
- Limited by the size / shape / mechanical resitance

Some examples of standard coating equipements....

□ Featured options:

- In situ plasma process (ICP, CCP, MW)
- Vaporization modules (adhesion promotor, etc...) •
- Chamber heating / cooling
 Automated LN2 filling

Comelec SA, rue de la Paix 129, 2301 La Chaux de Fonds, Switzerland

2. Parylene main features

5 main chemistries of "PARYLENE": poly(para-xylylene) polymers

❑ Most popular properties leading to success of Parylene :

- Chemically neutral with most substances.
- Biocompatible, and biostable (FDA approved, USP Class VI).
- Very good dielelectric material.
- Solid lubricant (ease of slipping for medical devices)
- > Hydrophobic
- > Very good barrier properties among polymeric materials
- > Almost 100% conformal coating , without pinholes.
- High to very high thermal stability (up to 450°C)
- Transparent film in the visible wavelengths

3. Medical Applications

3. Medical applications

Historical first Parylene application

- ✓ PCB coating :
 - Protects against moisture and oxygen.
 - Protects against *corrosive agents.*
 - Avoids <u>electrical damage</u> of chips.
 - Prevents from Tin whiskers related damages.
 - Enhances mechanical reliability (vibration)

=> Improved reliability in harsh environment

Especially for Milatary and aerospace applications.

Evolution to flex PCBs (especially for medical applications) :

As substrate or packaging layer

Comelec SA, rue de la Paix 129, 2301 La Chaux de Fonds, Switzerland

Implanted electronic devices (Pacemakers, Micropumps, , cochlear implants, sensors...)

- Improves reliability. Used as a complement to Titanium housing (diffusion barrier layer, protection against dielectric breakdown, wiring mechanical reinforcement, etc..)
- o Passivates materials to prevent from allergen reactions

Catheters, canulae, wirings, stents, etc...

Dry lubricity makes insertion easier

✓ Rubbers seals / O-rings / silicones parts

- Dry lubricity facilitates insertion / gliding
- Hydrophobicity enhances performances (fluid management)
- o Brings chemical inertness to elastomers (prevents from elastomer damage or additives releases)
- Polymers containers (pharmacology)
 - o Brings chemical inertness and keep pharmaceutic fluids pure
- Implantable glass tags :
 - improves and accelerates tissue adhesion

Pacemaker

□ First functional demonstrators (flexible ECG device)

ECG on parylene

- □ Manufacturing of free standing Parylene based PCBs
- □ Processing on Silicon wafers (100mm)
 - - Up to 3 level of metals (Au) including interconnexions
 - ICs bonding / brazing
 - Parylene substrate release (overall thickness of ~ 50 microns)

F. Bourgeois (Comelec SA), A.Bongrain (Bodycap), PA Chapon (Bodycap), G. Lissorgues (ESIEE), L. Rousseau (ESIEE)

Metal tracks 50 µm Sacrificial layer Silicon wafer

TOPPAN

European Project 2015-2018 : InForMed (ECSEL JU funding)

More and more Medtech devices built at the wafer scale, and so are

Smart Body Patches : electronics on flexible Parylene substrate 0

deposited the Parylene layers.

3. Medical applications

comelec

ESIEE

3. Medical applications

European Project 2015-2018 : InForMed (ECSEL JU funding)

o Steering Deep Brain Stimuator

Left: State-of-the-art DBS system; Right: clinical trials have proven that the segmented steering probe of SAPIENS can prevent side effects normally associated with DBS.

Source: www.informed-project.eu

□ Coating for long term implantable devices.

Development of adhesion strategies on a single device combining "critical" materials (PI, noble metals, ...)

- ✓ Adhesion evaluation using delamination tests or IDE . Before/After PBS soaking or during PBS soaking
- ✓ Interface control using plasma and plasma polymers process and / or adhesion promotors

□ Toward a Flex-2-Rigid technology with Parylene (instead of Polyimide)

4. R&D Projects

High Barrier Multilayer Coating

□ Anti-microbial Parylene

□ Parylene LASER ablation

Development of Advanced Parylene Coaters for wafers processing in clean rooms

Parylene adhesion reliability

....

□ High Barrier Multilayer Coating

<u>Goal</u> : Develop a parylene based multilayer coating with enhanced barrier properties

<u>General approach</u>: combine ceramic-like layer(s) with tight structures and Parylene

Dec 2005. Vol.20, 3224

High Barrier Multilayer Coating

State of the art : process often developped on silicon wafers or on free standing packaging films

Producer	Encapsulation Structure	Number of layers	₩ V T R 23°C, 50% RH (g.m ⁻² .day ⁻¹)	Strain at failure (%)
Vitex (Barix)	[acrylate/Al ₂ O ₃] ₄	7 + planarization	~ 1 × 10 ⁻⁶	0.8
Philips (NONON)	[SiN _x /SiO _x] _n	'12' + topcoat	3.6 × 10 ⁻⁶	1.0
GE (graded UHB)	[SiN _x /SiO _x] _n	'5'	8.6 × 10 ⁻⁶	?
Applied Materials	[SiN/lacquer] ₂	4 + planarization	~ 10 × 10 ⁻⁶	1.0
ЗМ	[oxide/polymer] ₂	4 + planarization	~ 0.5 × 10⁻ ⁶	?
Picosun	ALD (batch)	1	~ 1 × 10 ⁻⁶	?
Tera-Barrier	[nanocompos./oxide] ₂	5 + planarization	~ 1 × 10 ⁻⁶	?
Rolic	[SiN _x /polym nanocomp.] _{1,2}	2 or 4	~ 10 ⁻⁵ – ~ 10 ⁻⁶	?
Fraunhofer	[ormocer/ZTO] ₂	4 + planarization	70 × 10 ⁻⁶	?

Trade-off between barrier utlimate barrier properties and strain at failure !

Comelec goals :

- ✓ WVTR < 10^{-2} g/(m².day) for a 10µm multilayer coating (x 100)
- $a/s \cdot \checkmark$ Strain at failure > 2%
 - ✓ Industrial scale process for 2D and 3D parts (large reactors)
 - ✓ Low temperature process (<100°C)</p>

High Barrier Multilayer Coating

Key Factors :

- Statistics of defects and configuration to hinder related effects (cracks, particles, ...)
- Materials quality : intrinsic diffusion
- Interface control : stress, adhesion.

No universal choice for all applications => Comelec develops different approaches

Advantages of Parylene:

- Ability to «heal» defects thanks to exceptional conformality:
 - Particles immobilization
 - Cracks / pinholes penetration
- Low stress coating thanks to low temperature process (20-50°C) / no shrinkage

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

☐ High Barrier Multilayer Coating: results / status

• Hybrid equipment including Capacitive Coupled Plasma (CCP) :

• Proof of concept validated, first Parylene based multilayer with enhanced WVTR (3 logs !!)

Hybrid process

Subsequent processes, single ceramic layer

WN not dissolved

Adhesion OK

WN not dissolved Adhesion NOK

WN not dissolved Adhesion NOK

□ Anti-microbial Parylene

Goal : bring an anti-bacterial functionality to the parylene coating

Challenges:

- control anti-microbial efficiency over time and biocompatibility
- develop a scalable industrial process

Materials Science & Technology

Co-sputtering approach – Silver / Parylene composite

ASTM Standard Test Method

- Staphylococcus aureus (DSMZ No. 20231) suspension in agar slurry
 => 10⁶ colony forming units (cfu)/ml
- Incubation at 37°C, non-shaking, 24 hours
- **Compare activity value** (Control to test count)

LIVE / DEAD staining tests

Ag release versus time

molecule

Vaporizer

FTIR analysis :

EMPA

O-C=O signature indicates presence of the antimicrobial molecule in the \geq coating

XPS analysis :

N presence indicates presence of antimicrobial compound at the \triangleright parylene surface

- □ Next steps :
 - Process industrialization
 - Applications demo

4. Parylene LASER patterning

Development of Parylene LASER Ablation / patterning

Goal : replace and going further than manual masking

- ✓ Increase production yields : decrease costs
- ✓ Less mechanical sollicitation: better quality
- ✓ Fullfill miniaturization requirements : no design trade-off

Materials Science & Technology

Source: P. Hoffmann, Empa Thun

Experimental set-up:

- KrF Excimer LASER, 248nm => Photo-chemical ablation (instead of photo-thermal ablation)
- Beam homogenizer
- Mask projection system => very high productivity possible for large surfaces / high volume production
- Fluences: 200-500 mJ/cm²
- Repetition rate (frequency): 1-50 Hz

Samples :

- Parylene AF4 12µm on Si wafer
- Parylene AF4 12µm on glass
- o Parylene C 6µm on Si wafer

4. Parylene LASER patterning

Development of Parylene LASER Ablation / patterning

EMPA Materials Science & Technology

Characterization:

SEM

Standard

Par. AF4 - 12µm - on Si

2 mm

0.1

01

0.3

0.4

- 25

- 20

- 15 - 10

- 5

0.8 mm

06

4. Parylene LASER patterning

Development of Parylene LASER Ablation / patterning

Promising results:

- The Excimer laser repetition rate (frequency) does not change the ablation behaviour between 1Hz to 50 Hz. This indicates no strong thermal accumulation effect.
- No delamination of the Parylene film (typical failure when high thermal load or «burning»)
- No ablation of Silicon and glass wafers, even for large thickness (12 μm)
- Ablation leads to pattern resolution below 3 micrometers.
- High ablation rate in the range of ~ μm/sec

Observations to work on:

- Brown debris is deposited around the ablation regions. Can be removed largely in isopropanol ultrasonication.
- Residues on the Si substrate on the ablated floor remains in all cases even with very large number of shots.

Your contacts :

Florian BOURGEOIS R&D Project Manager

Hicham Damsir Business Manager

Comelec SA Rue de la Paix 129 CH-2301 La Chaux-de-Fonds Tel.: +41 32 924 00 04 Fax :+ 41 32 924 00 03 www.comelec.ch

3. Electronic applications

- ✓ PCB coating :
 - Protects against *moisture and oxygen*.
 - Protects against corrosive agents.
 - Avoids <u>electrical damage</u> of chips.
 - Prevents from Tin whiskers related damages.
 - Enhances mechanical reliability (vibration)

=> Improved reliability in harsh environment

Especially for Milatary and aerospace applications.

- ✓ Coil / Cores insulating
 - Dielectric layer.
- ✓ Flex PCBs :
 - As substrate or packaging layer

3. Mechanical / Micromechanical industry

✓ Solid lubricant :

- reducing the wear of parts in friction (only whith relatively small stress)

✓ Anti-tarnishing:

- avoiding corrosion related damages (silver tarnishing, ...)

- Cohesion media for sintered parts :
 - sealing porosities, reducing brittelness
 - particle immobilization
- ✓ Elastomer lubrification / protection:
 - reduce friction
 - protect against chemical damages

