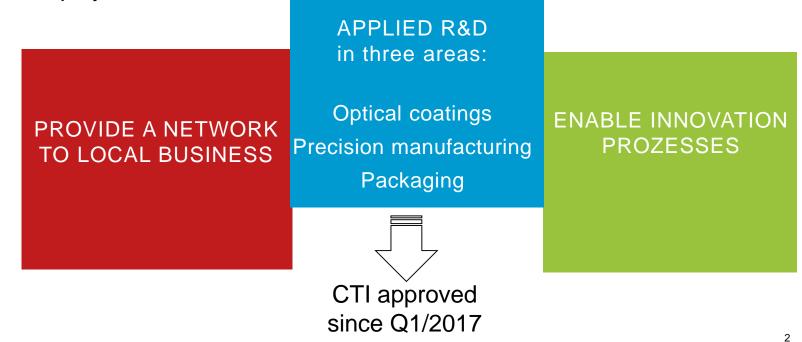


Optical Coatings



Photonics 4 Luxury Coatings 21.06.2017, Genève

Dr. Andreas Bächli Head of Optical Coatings at RhySearch, Buchs (SG)

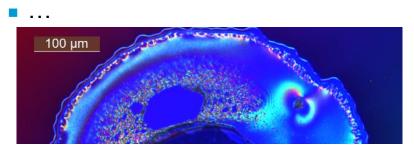
RhySearch The Research- and Innovation Center in the Rhine Valley

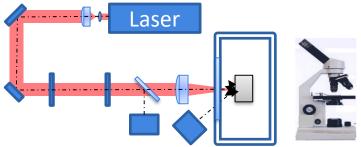
- RhySearch founded in 2013 (by St.Gallen & Liechtenstein)
- Board of directors with strong representation of the industry
- Further growth supported by strategy and approved investment plan
- Today 9 employees

3

Optical Coatings Lab @ RhySearch in a nutshell

Dual-Ion-Beam Sputtering


- Site acceptance test ongoing
- VIS-NIR Broad-Band Monitoring
- Ta₂O₅, HfO₂, SiO₂, more upon request


Laser Induced Damage Threshold (LIDT)

RhySearch

Innovationszentrum Rheintal

- ISO 21254 (e.g. S-on-1 test procedure)
- $\lambda = 1064, 532, 355 \text{ nm}$ (ns-Pulse)
- λ = 1030 nm (fs-Pulse)
- Degradation Chamber for Optical Components (cooperation with NTB)
 - Ar, N₂,O₂,humidity, Temp up to 250 °C
 - Investigate degradation under
 355 nm irradiation (ns, up to 100 kHz)
 - LIDT under controlled harsh conditions
- Cavity-Ring-Down (CRD)
 - 1064 nm and 638 nm (ISO 13142)
 - Reflectivity measurements our goal → 1 ppm detection limit

LIDT: Set-up and picture of damaged spot acknowledge: CTI-project 16871.1

Optical Coatings Lab @ RhySearch in a nutshell

Dual-Ion-Beam Sputtering

- Site acceptance test ongoing
- VIS-NIR Broad-Band Monitoring
- Ta₂O₅, HfO₂, SiO₂, more upon request

Degradation Chamber acknowledge: CTI-project 16871.1

Laser Induced Damage Threshold (LIDT)

RhySearch

Innovationszentrum Rheintal

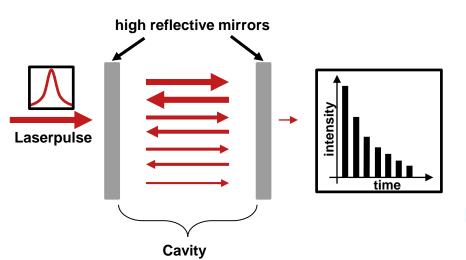
- ISO 21254 (e.g. S-on-1 test procedure)
- $\lambda = 1064, 532, 355 \text{ nm}$ (ns-Pulse)
- λ = 1030 nm (fs-Pulse)
- Degradation Chamber for optical components (cooperation with NTB)
 - Ar, N₂, O₂, humidity, temp up to 250 °C
 - Investigate degradation under
 355 nm irradiation (ns, up to 100 kHz)
 - LIDT under controlled harsh conditions

Cavity-Ring-Down (CRD)

- 1064 nm and 638 nm (ISO 13142)
- Reflectivity measurements our goal → 1 ppm detection limit

5

Optical Coatings Lab @ RhySearch in a nutshell

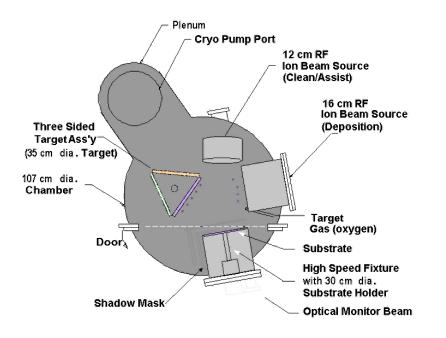

Dual-Ion-Beam Sputtering

. . . .

- Site acceptance test ongoing
- VIS-NIR Broad-Band Monitoring
- Ta₂O₅, HfO₂, SiO₂, more upon request

Laser Induced Damage Threshold (LIDT)

- ISO 21254 (e.g. S-on-1 test procedure)
- λ = 1064, 532, 355 nm (ns-Pulse)
- λ = 1030 nm (fs-Pulse)
- Degradation Chamber for optical components (cooperation with NTB)
 - Ar, N₂, O₂, humidity, Temp up to 250 °C
 - Investigate degradation under
 355 nm irradiation (ns, up to 100 kHz)
 - LIDT under controlled harsh conditions
- Cavity-Ring-Down (CRD)
 - 1064 nm and 638 nm (ISO 13142)
 - Reflectivity measurements our goal → 1 ppm detection limit


Schematic illustration of Cavity-Ring-Down

Optical Coatings Lab @ RhySearch in a Nutshell /

Ion-Beam-Sputtering Coating Tool (IBS) Laser Induced Damage Threshold (LIDT)

- Dual-Ion-Beam configurations
- VIS-NIR Broad-Band Monitoring
- Ta₂O₅, HfO₂, SiO₂, more upon request

ISO 21254 (e.g. S-on-1 test procedure)

Innovationszentrum Rheintal

- λ = 1064, 532, 355 nm (ns-Pulse)
- λ = 1030 nm (fs-Pulse)

Degradation Chamber for optical components (cooperation with NTB)

- Ar, N₂, O₂, humidity, temp up to 250 °C
- Investigate degradation under 355 nm irradiation (ns, up to 100 kHz)
- LIDT under controlled harsh conditions

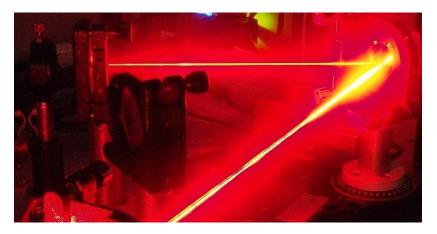
Cavity-Ring-Down (CRD)

- 1064 nm and 538 nm (ISO 13142)
- Reflectivity measurements our goal → 1 ppm detection limit

Overview

- Introduction to RhySearch
- Optical Coatings
 - Coating Process
 - Optical Interference
- Applications
 - Function of optical coating
 - Application specific challenges

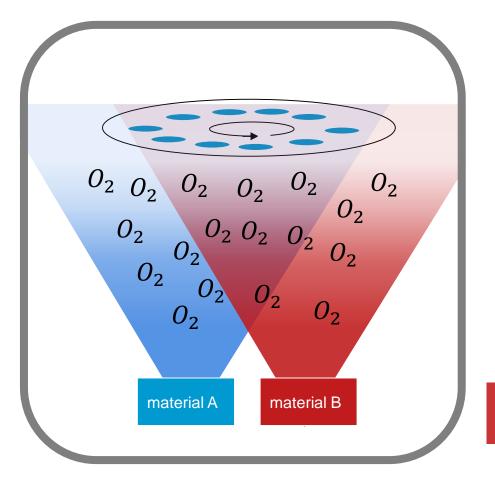
What are Optical Coatings ?



Coatings make **functional glass** in the path of the light non reflecting

Coatings are used to **guide**, to **alter** or to **filter light**

Source: www.twenty20vision.co.za


Source: RhySearch

Glass has a function

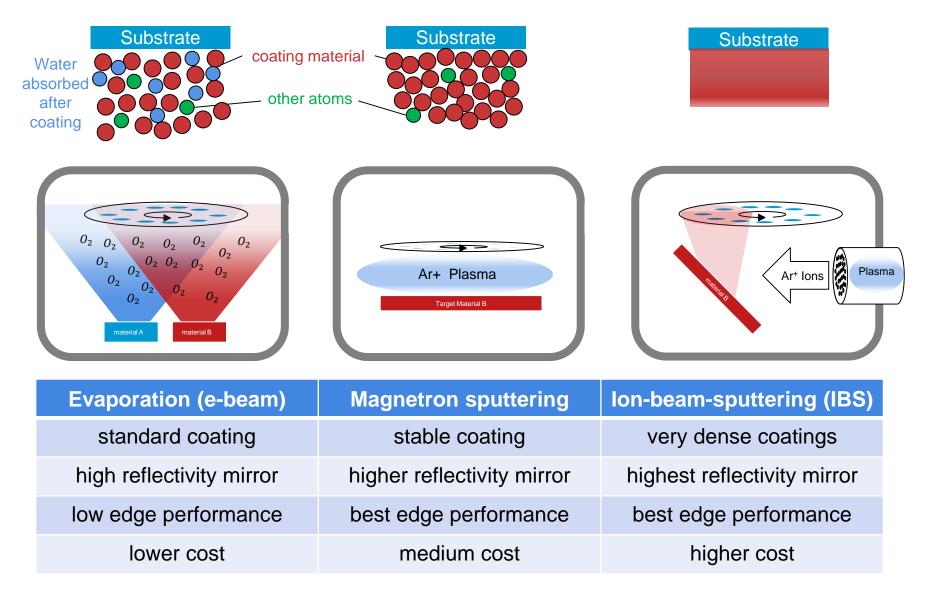
Coating has a function

Physical Vapor Deposition (PVD)

evaporation source(s)

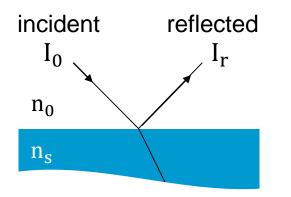
substrate holder

vacuum chamber

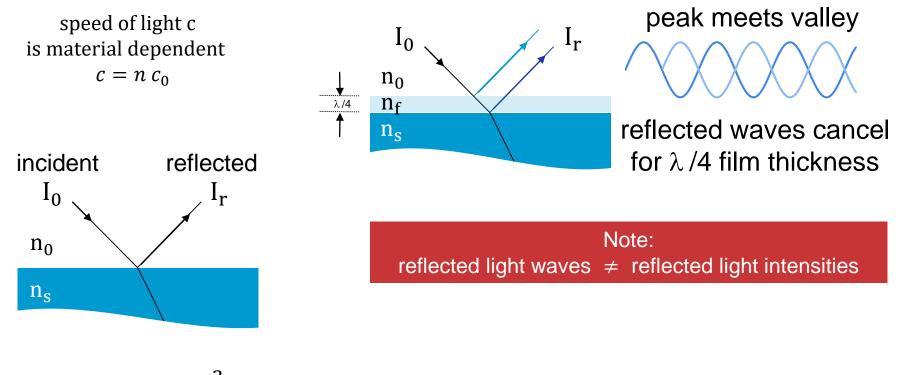

reactive gas (e.g. O_2 , N_2 , ...)

process control

Various configurations available with different strengths and weaknesses

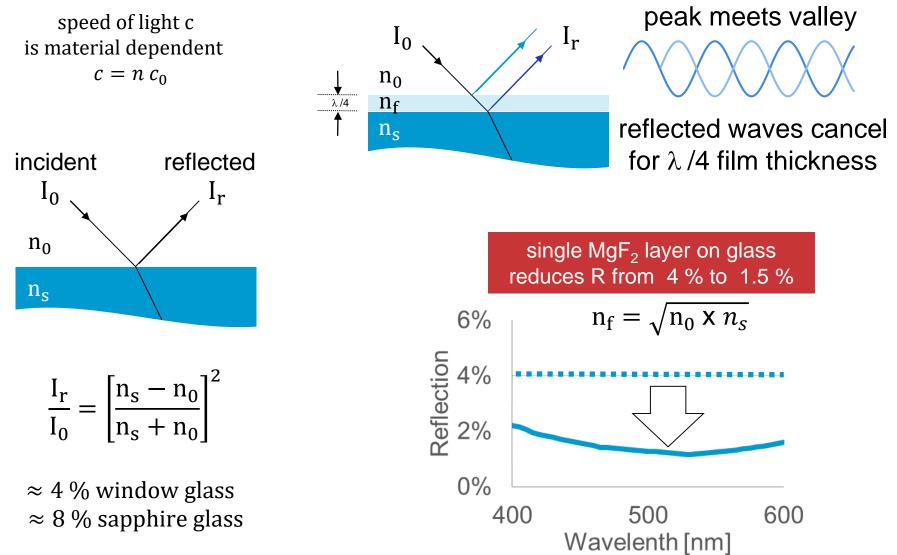

Coating Processes

speed of light c is material dependent $c = n c_0$


$$\frac{\mathbf{I}_{\mathrm{r}}}{\mathbf{I}_{\mathrm{0}}} = \left[\frac{\mathbf{n}_{\mathrm{s}} - \mathbf{n}_{\mathrm{0}}}{\mathbf{n}_{\mathrm{s}} + \mathbf{n}_{\mathrm{0}}}\right]^{2}$$

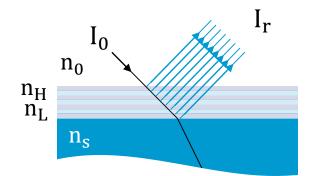
≈ 4 % window glass ≈ 8 % sapphire glass

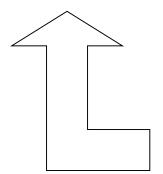
Source: RhySearch

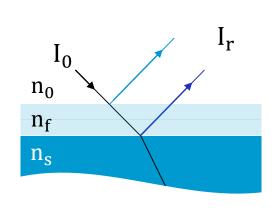


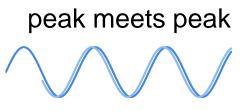
$$\frac{I_r}{I_0} = \left[\frac{n_s - n_0}{n_s + n_0}\right]^2$$

≈ 4 % window glass ≈ 8 % sapphire glass




peak meets valley speed of light c I₀ Ir is material dependent $c = n c_0$ n_0 n_f reflected waves cancel ns for $\lambda/4$ film thickness incident reflected I₀ lr n_0 peak meets peak n_s I_r I₀ n_0 $\frac{I_r}{I_0} = \left[\frac{n_s - n_0}{n_s + n_0}\right]^2$ n_f reflected waves n_s get more intense for $\lambda/2$ film thickness


≈ 4 % window glass ≈ 8 % sapphire glass


Perfect Mirror can be Formed by a Layer Stack

Alternating transparent thin layers with high and low index of refraction make a mirror with reflection for one λ

reflected waves get more intense for $\lambda/2$ film thickness

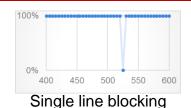
Functions by Optical Coatings

A wide range of functions

- function:
 - mirror
 - filter
 - beam-splitter
 - •
- incident angles
- spectral response
- polarization
- ...

By varying

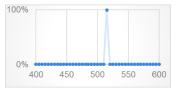
- layer material (oxides, fluorides, nitrides, metals ..
- number of layers (one to [many] hundred)
- individual layer thicknesses (few nm to few µm)


Coating types

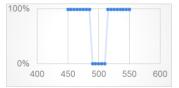
- anti-reflection coating
- attenuation filter
- band pass filter
- broad-band mirror
- conductive coating
- · color separation filter
- · laser protection filter
- · laser mirror
- · longwave pass filter
- · multi-band filter
- · short-wave pass filter
- trichroic filter

٠


. . .



100% 0% 400 450 500 550 600


Broad band mirror

Longpasss filter

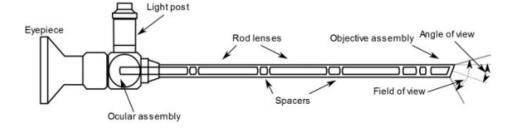
Narrow band transm

Laser mirror

Anti-Reflective Coating

Source: www.twenty20vision.co.za

Glasses


Coatings enhance view and lifestyle

Scratch-resistant, easy to clean ...

Endoscope

Many different glass types, size, ...

Source: Wientjes R et. Al PLoS ONE (2013)

Dichroic Filter (Color filter)

Source: www.beamerstation.de and www.pctechguide.com

Beamer

Filter to generate the colors

Long term color accuracy ...

Entertainment Lighting

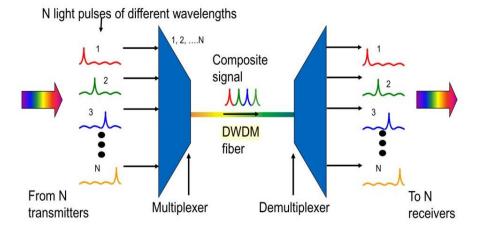
Heatresistant filter to generate colors

Consistent exact color ... and to get the artist's wish in a product, ...

Source: http://www.promusik.de

Narrow Band Transmission

Source: www.hilti.com

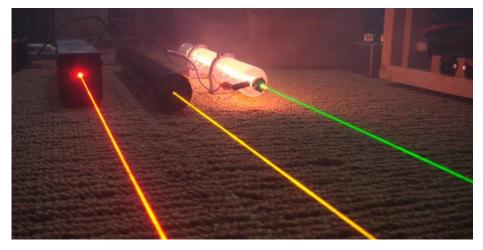


Source: http://imagesensors-world.blogspot.ch

Filter to boost signal to noise ratio in time-of-flight detection

High blocking, low angular dependence, ...

Telecom


Filter to select a single wavelength

Extremely narrow band pass, ...

Source: https://fiberopticsof.wordpress.com/tag/dwdm-multiplexer/

Source: hoststar.ch

Laser cavity mirror

Mirrors with very high reflection

Low loss, laser damage resistant, ...

Laser scanner heads

Mirror with very high (broadband) reflection

High flatness, ...

Optical Coatings

- PVD coating processes
- Interference in thin film multilayer system
- Enabling technology for many applications
- Challenges are application dependent

There is a strong optical coating industry in Switzerland across the entire value chain (tools, materials, vacuum, coating, ...) with players supplying the global marketplace

that can provide solutions to meet your requirements

Thank you

Andreas Bächli@RhySearch.ch