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What is a Grating Waveguide Structure? 

 Answer: Combination of a sub-wavelength grating and planar waveguide
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Grating Waveguide Structure: Introduction

 A GWS is characterized by unique resonances thanks to the excitation of 

„true“ guided modes or leaky modes

 Resonances can be in 

 reflection,

 transmission or 

 diffraction

grating

waveguide

substrate

By a proper design of the GWS 

parameters it is possible to modulate

the reflected, transmistted, or 

diffracted beam from 0 to 100% for a 

given polarization, wavelength and 

angle of incidence (AOI) due to

interferences or coupling phenomena

diffraction grating (<)

field accumulation i.e

waveguide

+

These phenomena are very sensitive to GWS opto-geometrical 

parameters. A precise control of the manufacturing is required 

to successfully transform a design to the actual GWS
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 Opto-geometrical parameters of a GWS are: 

 Refractive indices (cover medium, substrate and coated layers)

 Thicknesses of coated layers

 Grating parameters (period, duty-cycle, groove depth, shape)

 Deviation of these parameters will lead to detrimental deviation of the 

function of the GWS (e.g. spectral shift, reduced polarization selectivity, 

reduced diffraction efficiency, etc…)

 Examples: 

Grating Waveguide Structure: Introduction
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 Refractive indices and thicknesses of waveguide (coated layers)

 Usually specified by suppliers but not always precisely enough known for 

requirements in GWS design 

 Better to measure them 

e.g. by “M-lines spectroscopy”

 Accuracy refractive index <10-3

 Accuracy layer thickness <5 nm

 Grating parameters (period, duty-cycle, groove depth, shape)

 Depend on choice of production technique (lithography + etching) and its 

precision

 Often costly process calibration required for each new fabrication run

Grating Waveguide Structure: Introduction
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 Fabrication

Grating Waveguide Structure: Introduction
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Applications in high-power lasers

 Polarization state and gratings

 Linear polarization: linear gratings

 Radial and azimuthal polarization: circular gratings

radial polarization azimuthal polarization

TM polarization TE polarization

grating lines
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Applications in high-power lasers

 Polarization selective GWS: Generation of beams with radial/azimuthal 
polarization (beneficial for material processing*: cutting, welding, drilling)

 Common state of the art polarizations are linear or circular (elliptical): 
homogeneous polarization state over the beam cross-section

 Radial or azimuthal polarization = inhomogeneous polarization state over 
the beam cross-section

* Weber et al., Phys. Procedia 12, 21 (2011) 
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Applications in high-power lasers

 Polarization selective GWS: generation of beams with radial/azimuthal 
polarization

 Structure: circular sub-wavelength grating + fully dielectric multilayer mirror

 Principle of leaky-mode grating mirror

 Reduction of the reflectivity of the undesired polarization

 The orthogonal polarization does not „see“ the grating and exhibits a 

reflectivity close to that of the HR mirror without grating

 Only the polarization with the lowest losses (highest Reflectivity) will 

oscillate in the laser

TM (radial)

polarization 

(~ 100%)

TE (azimuthal)

polarization

Coupling to 

a leaky mode
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Applications in high-power lasers

 Polarization selective GWS: generation of beams with radial/azimuthal 
polarization

 Design & Fabrication method: SBIL (Scanning beam Interference 
Lithography) + RIE

 Grating: Period=930 nm, Depth=20-25 nm 

 Multilayer: 29 (/4) alternating Ta2O5/SiO2

 Rradial = 99.92% (design)

 Razimuthal =88.2% (design)

TM

polarization 

(~ 100%)

TE 

polarization

Coupling to 

a leaky mode

 Generation of beams with 

radial polarization
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 Polarization selective GWS: generation of beams with radial/azimuthal 
polarization

 Reflectivity measurement & laser test

 Razim = 99.8%+/- 0.2% (measured)

 Rradial = 90% +/- 0.2% (measured)

 Demonstration of up to 660 W output power (Opt. Eff. ~ 45-50%), 

M²<2.3

 DORP (degree of radial polarization): 98.5% +/-0.5%

Applications in high-power lasers
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 Polarization and wavelength selective GWS: narrow bandwidth and linearly 

polarized thin-disk laser (beneficial for SHG)

 The resonant reflection effect*

 At resonance….

 Coupling condition

  = kinc + Kg i.e. 

 Neff=sin + m*/

Applications in high-power lasers

grating

waveguide

substrate

nair

ng

ns

 phase shift

Destructive interference

100 % Reflectivity

Coupling



*A. Avrutsky and V.A. Sychugov, Journal of Modern Optics, 36(11), 1527-1539 (1989)
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Applications in high-power lasers

 Polarization and wavelength selective GWS: narrow bandwidth and linearly 

polarized thin-disk laser (beneficial for SHG)

 Resonant grating mirror: Single-layer corrugated waveguide

 300 nm Ta2O5 film (Ta2O5) on fused silica substrate

 50 nm binary grating etched from top

 Measured reflectivity at 1030 nm: 99%

 Maximum power extracted: 70 W, Optical efficiency: 24.3% (M2 ~ 1.1)

 Laser emission bandwidth (FWHM): 25 pm (~ 9 GHz)

 Degree of linear polarization: > 99%

300 nm Ta O2 5

Fused silica substrate

M. Vogel, M. Rumpel, et al., Optics 

Express, 20(4), 4024-4031 (2012)
Loss still high
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Applications in high-power lasers

 Polarization and wavelength selective GWS: narrow bandwidth and linearly 

polarized thin-disk laser (beneficial for SHG)

 Combination of partial reflector and GWS

(PR=uarter-wave layers sequence)

 GWS was designed to operate at an AOI~10°

 Measurement of reflectivity @ AOI~10°

 9L-30nm: RTE = 99.9%

 7L-30nm: RTE = 99.7%

 5L-30nm: RTE = 99.6%

 Measurement accuracy  0.2%
a) b)

Simulation Measurement
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 Implementation in high-power CW fundamental mode thin-disk laser

Applications in high-power lasers
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 Polarization and wavelength selective GWS: narrow bandwidth and linearly 

polarized thin-disk laser (beneficial for SHG)

 The resonant diffraction effect*

 Grazing incidence: Coupling of leaky modes

 Grating: phase-shift RFresnel RLeaky

 Grating: -1st diffraction order in reflection

 All power directed to -1st diffraction order

Applications in high-power lasers

*N. Destouches, M. Abdou Ahmed, et al.,  Opt. Express 13, 3230-3235 (2005) 
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 The resonant diffraction effect: 

 Design and spectroscopic characterization (meas. diffraction efficiency)

 High efficiency (99.8% measured) in the -1st order under Littrow angle

Applications in high-power lasers

GWSLittrow-

Angle L

Laser

Diffraction order

GWS
Incidence

Angle L

The same laser

Diffraction order

M. Rumpel et al., Optics letters 37(20), 4188-4190, 2012
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Applications in high-power lasers

 Implementation in high-power CW fundamental mode thin-disk laser (IR)

POut = 620 W

14°

14°

24-passes module θL = 56.4°

2. GWM in Littrow condition

Plane, 

HR 1030

R = 96%, cav 500mm 

RDisk = 3.85m

D = 15 mm

d = 130µm

λ = 969 nm

14°

Plane, 

HR 1030

1. Plane, HR 1030

 Pump spot diameter = 5.5 mm

 Total resonator length = 2.1m

 Pumping wavelength: 969 nm
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Applications in high-power lasers

 High-power CW fundamental mode thin-disk laser (IR) 

 Grating: 620W Output @ 1.2kW Pump, ηopt ~ 51.6 %, M²x = 1.33 ; M²y = 1.22

POut = 620 W
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Applications in high-power lasers

 High-power CW fundamental mode thin-disk laser (IR)

 Laser emission spectra (HR/ GWM: M2 < 1.3)

 > 200 kW/cm2 CW intra-cavity power density on grating mirror surface at 620 W 

output power and 4% OC transmission (15.5 kW intra-cavity power)

 Measured DOLP > 99.8%
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Applications in high-power lasers

2wBeam = 460 µm

TDL module, 24 passes

θL = 56.4°

GWM in Littrow

configuration

Plane, 

HR 1030, 

HT 515

Concave 500mm, 

HR 1030,

HR 515

Pump: λ = 969 nm

Plane, 

HR 1030

LBO crystal515 nm

1030 nm

 High-power CW fundamental mode thin-disk laser (SHG – Green)

 Pump spot diameter = 5.5 mm

 Total resonator length = 2.1 m

 Pumping wavelength: 969 nm

 LBO: Type I (CPM), (4x4x15) mm³

 Beam diameter in the LBO: 460 µm
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Applications in high-power lasers
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Applications in high-power lasers

 Implementation in high-power CW multimode thin-disk laser (IR)

 Qualification tests at very high-power

 Up to 1788W (>125kW/cm²) reached without damage of the grating!
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Applications in high-power lasers

Laser emission spectra for HR and GWS

HR 

 Wavelength selection + stabilization with intra-cavity GWS

 GWS 
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Outline

 Grating Waveguide Structure (GWS): Introduction
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 Summary
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Summary

Conclusion

 GWS enables the generation of high-power beams with radial 

polarization

 High-power fundamental mode and multimode SHG in thin-

disk laser demonstrated using a GWS as polarization and 

wavelength selective device

 GWS enables efficiency increase when compared to 

standard approaches (etalon, TFP)

 TEM00: P515nm = 403 W → 40.7% opt. efficiency

 MM: P515nm = 1080 W → 39.5% opt. efficiency

Outlook

 LIDT experiments

 Further power scaling (green) TEM00 > 1 kW & > 2 kW in MM 

operation
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