

High power picosecond lasers are ready for production

Dr. Sascha Weiler

TRUMPF Laser GmbH + Co. KG 78713 Schramberg

High power picosecond lasers

Picosecond Lasers: fs Quality with ns Speed

ns pulses

ps pulses

fs pulses

C. Momma, B.N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, B. Wellegehausen, "Short-pulse laser ablation of solid targets", Opt. Commun. **129**, 134 (1996)

High power picosecond lasers

Micromachining with Picosecond Lasers

High power picosecond lasers

Drilling with picosecond pulses

 Phase 2: Drilling through (t = 1 ms - 1s)

 Phase 3: Forming the Exit Side (t = 0.01 - 10 s)

High power picosecond lasers

Drilling with high Aspect Ratio

Helical Drilling of Stainless Steel

- No melt or debris
- No Heat Affected Zone
- Free selection of taper (positive, negative or zero)
- Diameters: 50 to 100 μm
- Material thickness: up to 1.5 mm
- Applications: Injectors, cooling holes, filters

Drilling with high Aspect Ratio

Helical Drilling of Stainless Steel

- No melt or debris
- No Heat Affected Zone
- Free selection of taper (positive, negative or zero)
- Diameters: 50 to 100 μm
- Material thickness: up to 1.5 mm
- Applications: Injectors, cooling holes, filters

High power picosecond lasers

Drilling with high Aspect Ratio

Helical Drilling of Titanium

- No melt or debris
- No Heat Affected Zone
- Free selection of taper (positive, negative or zero)
- Diameters: 50 to 100 μm
- Material thickness: up to 2 mm
- Applications: cooling holes for turbine blades

High power picosecond lasers

Exit

Drilling with low Aspect Ratio

Drilling of Ceramics (AIO, AIN, etc.)

- Percussion Drilling / Trepanning with Scanner Optics
- Diameters < 100 µm X mm
- Low HAZ
- No Chipping/Cracking
- Applications: Ceramic PCB

Drilling with low Aspect Ratio

Drilling of Silicon

- Percussion Drilling / Trepanning with Scanner Optics
- Diameter < 100 µm X mm
- Low HAZ
- High edge quality
- Application: Through Silicon Vias for 3D packaging

Cutting

High power picosecond lasers

Cutting with picosecond pulses

Cutting of Nitinol

- Small cutting kerf (< 10-20 µm)
- Negligible HAZ
- High quality of cutting edge
- No electro polishing!
- High yield
- High productivity due to high average power
- Application: Cutting of Stents, endoscopes

High power picosecond lasers

Cutting with picosecond pulses

Cutting of Silicon Wafers

- Small cutting kerf (< 20 μm)
- Negligible HAZ
- High quality of cutting edge
- High productivity due to high average power
- Applications: Waferdicing

Cutting with picosecond pulses

Cutting of Silicon Wafers

- Small cutting kerf (< 20 μm)
- Negligible HAZ
- High quality of cutting edge
- High productivity due to high average power
- Applications: Waferdicing

Cutting with picosecond pulses

Scribing and cutting of Ceramics

- Small kerf width (< 20 µm)
- Negligible HAZ
- High quality of cutting edge
- High productivity due to high average power
- Applications: Scribing / cutting of ceramic PCBs

Cutting with picosecond pulses

Scribing and cutting of Ceramics

- Small kerf width (< 20 µm)
- Negligible HAZ
- High quality of cutting edge
- High productivity due to high average power
- Applications: Scribing / cutting of ceramic PCBs

Cutting with picosecond pulses

Scribing and cutting of thin glass

- Small kerf width (< 20 µm)
- Negligible HAZ
- High quality of cutting edge
- High productivity due to high average power
- Application: Scribing/cutting of thin glass for Flat-Panel-Displays

Thin Film Ablation with picosecond pulses

Thin Film Ablation

Laser patterning of thin Mo on glass

- Burr free
- Melt free
- No delamination
- Isolated channel
- Application: P1 step for CIGS cell connection

Thin Film Ablation

Laser patterning of thin films on Silicon

Direct patterning of SiO/SiN layers

- Thickness of layers: 100 nm
- Single shot ablation
- Selective removal without affecting base material (Silicon)
- Application: Cell connection for Silicon Solar Cells, low-k dielectric grooving

General Demands for Industrial Lasers

General Demands for Industrial Lasers

High productivity

00028367

TruMicro Series 5000

	TruMicro 5050	TruMicro 5250	TruMicro 5350	
Average Power	50 W	25 W	> 15 W	RUNAPE
Wavelength	1030 nm	515 nm	343 nm	The second
Pulse Duration	< 10 ps	< 10 ps	< 10 ps	
Max. Pulse Energy	250 µJ	125 µJ	> 75 µJ	
Repetition Rate*	200/400 kHz	200/400 kHz	200/400 kHz	
Beam Quality	M ² < 1.3	M² < 1.3	M² < 1.3	

* Higher Repetition Rates upon request

GIDTAR

168 Jum

General Demands for Industrial Lasers

High productivity AND high duty cycle

External Multiplexing

- External beam switches for multiplexing
- Up to 4 beam switches incl. safety circuit
- Easy integration in TruControl
- Maximise Laser-on Time
- → Maximise Productivity

High power picosecond lasers

High power picosecond lasers

High power picosecond lasers

High power picosecond lasers

General Demands for Industrial Lasers

High productivity, high duty cycle, high stability

TruMicro 5050 - Stability

Guaranteed Power stability < 1,5% for ambient temperatures of 20 – 30 °C

General Demands for Industrial Lasers

- High productivity, high duty cycle, high stability
- High availability (> 98 % @ 24/7)
- Worldwide service and support 24/7 (Telepresence)

TelePresence Portal – Facts & Figures

- Almost 100% of the devices are supplied with integrated modem and give the ability to TelePresence
- For 70 80% of the delivered devices our customers make use of TelePresence
- > 90% of all incoming inquiries can be solved without on-site action
- 80% of the cases are diagnosed within 15 minutes
- Only about 50% of the cases are defects the other 50% are operation-, activation- and integration problems or system calibration
- TRUMPF has so far the only remote maintenance solution certified by the Federal Office for Safety in the Information Technology (BSI)!

General Demands for Industrial Lasers

- High productivity, high stability
- High Availability (> 98 %)
- Worldwide service and support 24/7 (Telepresence)
- Long Service Intervals (> 5000 h)
- Long Lifetime of Pump Diode (> 20000 h)
- Low Total Cost of Ownership (< 10 Euro/hour)
- Process development and optimization in-house and on customer site

Summary

For industrial picosecond lasers a only combination of

- Short pulses (< 10 ps)
- High average power (> 50 W)
- High pulse energy (> 150 250 μJ)
- High (but not too high for scanner speeds) pulse frequency (200 400 kHz)

while GUARANTEEING

- Best beam quality ($M^2 < 1,3$)
- High beam roundness (> 90 %)
- High pulse to pulse stability (< 2 %)
- High availability (> 98 %) and low TCO

enables for efficient and cost-effective micro machining!

Thank you!

Dr. Sascha Weiler TRUMPF Laser GmbH + Co. KG Aichhalder Straße 39 78713 Schramberg Sascha.Weiler@de.trumpf.com

High power picosecond lasers