

Linear and nonlinear absorption in optical coatings

Christian Mühlig

Outline

- Laser Induced Deflection (LID) absorption measurement technique \bullet
- Calibration / setup
- Measurement concepts (round substrates)
- Experimental results
- Summary \bullet

Laser induced deflection (LID)

- Probe beam deflection is a *direct measure* for the absorbed mean laser power
 - Main challenge: How to calibrate for *reliable* absolute absorption data?

Calibration for absolute absorption data

- Absorption induced heat is simulated by electrical heating (adaption of calorimetry's calibration)
- Absolute data without simulations and knowledge of material's photo-thermal parameters
- Unique feature for photo-thermal techniques

- ightarrow

Linear behavior over several orders of magnitude of absorbed power **Energy balance measurements** (T+R+A+S=1) approve that no systematic error exists

Setup

Probe beam unit (movable to scan over sample length)

Example for sensitivity (fused silica): 10µW absorbed power

Pump laser

Measurement concepts

Concept for "thin disc" samples

- Coated disc is attached to a low absorbing (cubic) substrate
- Heat transfer from disc to substrate \rightarrow probe beam deflection *inside* substrate
- If disc material/substrate show measuring signal itself → Measuring coated vs. uncoated thin disc → discrimination of coating absorption
- Double-side coated samples give better accuracy (though no access to individual coating)
- Typical disc size: Ø=1/2", 1"...2"; thickness ≤2mm (sensitivity decreases with thickness; measuring signal from disc material increases)
- Standard electrical calibration

Inside substrate substrate suring coated vs. uncoated

cess to individual coating) ecreases with thickness;

®jena**photonic**s ح

Measurement concepts

Concept for "thick disc" samples

- Pump and probe beams are guided through the same surfaces, but still under 45°/90° to ightarroweach other
- Easy access to both, AOI=45° and AOI=0° tests \bullet
- Double-side coated samples give better accuracy (though no access to individual coating) ightarrow
- Typical disc size: $\emptyset = 1/2'' \dots 2''$; d=5-10mm (\rightarrow excellent option to compare with CRD ightarrowmeasurements at same sample)
- Standard electrical calibration ightarrow

Nanoporous SiO₂ films (ALD) for single layer antireflection coating

coating at 193nm (\rightarrow no Al₂O₃)

ightarrowto "common" AR coatings

L. Ghazaryan *et. al.* "On the Properties of Nanoporous SiO₂ Films for Single Layer Antireflection Coating ", Adv. Eng. Mater. 2019 1801229

Low absorption (400ppm) for oxide AR

Absorption @1064nm (2ppm) is comparable

Separation of coating and interface absorption

- **Goal: Access to k-values for thin films**
- LaF₃ and MgF₂ single layers on thin CaF₂ discs \rightarrow attached to fused silica cube \rightarrow sensitivity increase by use of thermal lens in fused silica
- Uncoated CaF₂ disc for reference ightarrow
- Total absorption vs. film thickness \rightarrow separation of interface and layer absorption
- Important: identical CaF₂ discs, interface and layer properties

\rightarrow k-value of thin film is significantly overestimated without separation of interface effect!

Nonlinear absorption in TiO₂ at 800nm

- **Issue:** Coating properties (e.g. reflectivity) at high intensities alter from simulated data \rightarrow Nonlinear absorption/refractive index need to be taken into account in coating simulations for high intensity applications
- Single TiO₂ layers (PIAD, d=200nm) on SiO₂ substrate; λ =800nm
- "Zero" intensity \rightarrow cw semiconductor laser
- High intensities \rightarrow fs-laser with τ =82fs, f=1kHz (Astrella-V-F-1k, Coherent Inc.)

\rightarrow Linear increase of absorption with intensity (Beer's Law)

O. Stenzel et. al. "Linear and Nonlinear Absorption of Titanium Dioxide Films Produced by Plasma Ion-Assisted Electron Beam Evaporation: Modeling and Experiments ", Coatings. 2020, 10, 59, doi:10.3390

Nonlinear absorption in TiO₂ at 800nm

TPA coefficients from rutile and PIAD TiO₂ compared to simulations (Sheik-Bahae; Stenzel et.al.)

- Amorphous TiO₂ films show higher TPA coefficients than rutile \rightarrow agreement with earlier experimental results for fluoride thin films at 193 nm
- Absorption is higher than expected from model \rightarrow "real" vs. "ideal" thin film structure

O. Stenzel et. al. "Linear and Nonlinear Absorption of Titanium Dioxide Films Produced by Plasma Ion-Assisted Electron Beam Evaporation: Modeling and Experiments ", Coatings. 2020, 10, 59, doi:10.3390

Nonlinear absorption in HfO₂ single layers at 400nm

- "Zero" intensity \rightarrow cw semiconductor laser
- High intensities \rightarrow fs-laser with τ =58fs, f=1kHz (SHG; Astrella-V-F-1k, Coherent Inc.)

 \rightarrow Strong deviation from linear increase of absorption vs. intensity for high intensities \rightarrow Determination of TPA coefficient is not straightforward

Nonlinear absorption in HfO₂ single layers at 355nm

Absorption as function of laser intensity at 355nm (pulse duration: 35ns)

- Confirmation of sub-linear increase of absorption with intensity
- Explanation???

12

For comparison: Nonlinear absorption in bulk-SiO₂ at 193nm

Bulk-SiO₂: Very similar absorption behavior which results from laser induced defect generation/annealing in addition to intrinsic two-photon absorption

 \rightarrow Similar defect structures in SiO₂ and HfO₂ (e.g. oxygen related defects)

 \rightarrow Assumption: Absorption as function of intensity in HfO₂ is also driven by structural defects in addition to two-photon absorption

Ch. Mühlig et. al. "Coefficients of stationary ArF laser pulse absorption in fused silica (type III) ", J.-Non-Cryst. Solids. 353 (2007), 542, doi:10.1016/j.jnoncrysol.2006.10.021

Summary

- **Laser Induced Deflection (LID)** technique enables sensitive direct absorption measurements (photo-thermal effect)
- Unique electrical calibration procedure \rightarrow absolute absorption data without knowledge of material parameters/simulations
- Access to all wavelengths no restrictions to laser beam quality
- Nonlinear absorption in thin films:
 - TiO₂ @800nm: Linear absorption increase with intensity
 - TPA coefficients in expected range compared to rutile and theoretical models
 - HfO₂ @400nm: Sublinear increase of absorption with intensity
 - Confirmed by measurements @355nm
 - Similar to absorption behavior in bulk-SiO₂ @193nm
 - Assumption: Absorption as function of intensity in HfO₂ is driven by structural defects in addition to two-photon absorption

Acknowledgement

- The Federal Ministry of Economics and Technology for financial support within the framework of the Confederation of Industrial Research Associations (project "Kompakter, gepulster 266nm-Festkörperlaser hoher Leistung und Lebensdauer für die Materialbearbeitung").
- The Bundesministerium für Bildung und Forschung, grant number 13N10459, and by the European Regional Development Fund, grant number 2016 FE 9045.
- Layertec GmbH for measuring nonlinear absorption of HfO₂ at 355nm ightarrow
- Numerous partners for their trust in our measurement technique \bullet and ongoing new challenges.

THANK YOU FOR YOUR ATTENTION!!!

Calibration (electrical)

Energy balance measurements (T+R+A+S) for calibration approval

CaF₂ samples of different quality at 193nm:

Sample	T [3cm] [%]	R (Fresnel) [%]	A [1cm] [%]	TS
Α	91.18	7.73	0.74	(
В	90.26	7.73	1.50	(
С	84.85	7.73	4.14	
	Transmission Measurements (IPHT)	Theoretical value	LID Measurements (IPHT)	Meas

No systematic error for individual characterization techniques

TS surements (IOF)

