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Single Junction cell

b

Two basic elements arise in a
| thermodynamic analysis of high-
! efficiency photovoltaics within the
, Shockley—Queisser model: (1)
I reducing the deficit between the
¥ | bandgap energy and the electron—
/ V/ hole quasi- Fermi-level splitting,

0c and (2) minimization of carrier
thermalization losses and
| absorption- loss of sub-bandgap

/ light
/l
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a, Energy diagram of a single-junction solar cell. Light at an energy hw (red arrow)
creates an excitation from the valence (V) to the conduction (C) band of a
semiconductor. After thermalization in the conduction band an electron—hole pair
is formed across the bandgap with energy Eg. Light with an energy below the
bandgap (purple arrow) is not absorbed. b, Typical current—voltage (/-V)
characteristics of a solar cell. The short-circuit current /sc is a direct measure of
the conversion efficiency from incident photons to electrical current. The open-
circuit voltage Voc is significantly lower than Eg due to entropic reasons. The
maximum-power operating point of the solar cell is indicated by the dashed lines.

Nature Materials 11, 174-177 (2012) doi:10.1038/nmat3263
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Spectrum
splitting

a, Multi-junction energy diagram. Semiconductors with different bandgaps convert different portions of the solar
spectrum to reduce thermalization losses. The quasi-Fermi levels defining the open-circuit voltage are indicated by the
horizontal blue dashed lines. The yellow dots represent the electrons. b, Parallel-connected architecture that can be

realized using epitaxial liftoff and printing techniques of the semiconductor layers, followed by printing of a micro- or
nanophotonic spectrum splitting layer.

Nature Materials 11, 174-177 (2012) doi:10.1038/nmat3263
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Anil Kumar, Dissertation, 201 I, University of lllinois
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Optical Antennas

Sensing Non-linear spectroipopy
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Antennas for Photovoltaics

Cover a large spectrum by varying materials and shapes

(a) % (c) %
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Schematic of different types of antenna effects in photovoltaics.
(a) Far-field scattering, leading to a prolonged optical path.

(b) Near-field scattering, causing locally increased absorption, and
(c) direct injection of photoexcited carriers into the semiconductor.

must Advances in Optics and Photonics 1, 438—483 (2009)
doi:10.1364/A0P.1.000438
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Rectennas
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(A) Scheme of the experimental set-up. (B) Scanning electron microscopy (SEM) image of a representative device, imaged at a
52° tilt angle. Inset: enlargement of the silicon nanowire coated with gold nanomaterials. (C) Cross-sectional schematic view of
device. One of the gold electrodes acts as drain (D) and the other is source (S) electrode. Energy-band profile and
photodetection mechanism in (D) uncoated- and (E) device coated with nanomaterials. In both (D) and (E), the red rectangular
boxes denote the gold band and the light tan colored regions represent a silicon nanowire band structure together denoted
with Ec and E,, energy level in conduction and valence band, respectively: in (E), additional energy-band diagrams for the silicon
and gold nanomaterial are shown too, together with the highest occupied molecular orbital (HOMQO) and lowest unoccupied
molecular orbital (LUMO) levels of the organic coating of the nanoparticles. The black filled and open circles represent the
electron and hole, respectively, the dashed red line shows the Fermi level, Ef, the black solid arrow represents the process of
CCG and the green curved arrows represent the process of CT, the dashed blue line is a fiducial line to show the Fermi level
variation across the channel upon light illumination. Francesco Stellacci, EPFL.
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Plasmonic energy transfer

SPB

excitation
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Possible reaction pathways following plasmon excitation of metal nanoparticles in the presence of chemical molecules.
In the presence of a suitable receiver, antenna effects (A) can result in excited state processes (As and At). Plasmon
relaxation can lead to thermal effects (T) that can themselves induce supramolecular changes in guest molecules (Ts),
chemical change (Tc) sometimes referred as photocatalysis, or changes in the nanoparticle itself (Tn) of either a
physical or chemical nature (e.g., oxidation).Under plasmon excitation the nanoparticle can act as an electron donor
(Et) or as an electron acceptor (Ht). (J. Phys. Chem., C,201 1, | |5, 10784).
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Solar irradiation at the Earth’s surface

0.3% of Saharan
solar energy could
power Europe.

HSBC @

The woridia local bank
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Do you see a world
of potential? We do.

HSBC &>

Tha worids local bank




Solar irradiation at the Earth’s surface

The Sheffield Solar Farm NASA

Solar radiation is higher at the equator, and Single night on planet earth....
lower further north and south. If covered in

solar panels, each blue spot would provide

more than the world’s current energy

demand.
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Energy conversion Storage
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PHES: Pumped hydroelectric energy storage, CAES : Compressed air energy storage,
ICE : Internal combustion engine Chem. Rev. 2010, 110, 6474-6502
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Alkaline
water electrolysis

Cell;

Electrolyte : 20-30% KOH
Diaphragm cell

Cell Voltage = 1.65 -2V

Energy consumption :4-5 kW h m=3
Current yield: >98%

H> purity : >99.8%

Nickel electrodes :

Cathode: Pt coating - Ni can dissolved in intermittent use
Anode : Oxide coating e.g. MnO3
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Redox flow batteries

* A sustainable system coupling energy storage (redox flow
battery) and energy conversion (catalytic beds to regenerate
redox mediators)

* Allows the production of hydrogen, and oxygen or other
oxidized products

H:

Power supply/
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A cerium /vanadium redox flow battery
for hydrogen generatlon
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Energy conversion Storage
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Honda's Next Generation Solar Hydrogen Station Prototype

HONDA

The Power of Dreams

Wednesday, June 13, 12



http://www.rs.kagu.tus.ac.jp/kudolab/

Photocatalysis

Technologies | Photon

Photocatalysis Type 1

hv H,O Biomass

Solid semiconducting or molecular photosensitizers

Semiconducting or molecular catalysts for reduction (CatR) and oxidation (CatO)

2 Photons

Redox recycling

Photocatalysis Type 2

hvr ‘— H" hvo H,O

The two photosystems can be physical separated to collect the gases
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Photocatalysis

Technologies
2 Photons
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Hydrogen producing solar panels
M. Gratzel, EPFL
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Batch water splitting
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At night
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Photo-reduction D*+A- — D +A Photo-oxidation
Hydrogen Production Oxygen Production

D: Sacrificial electron donor
A : Sacrificial electron acceptor
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Metallocenes
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Hydrogen photo-production

production
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Hydrogen production

Interfacial Proton reduction by decamethylferrocene

|. DMFc protonation - Volmer reaction
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Osmocene Water Splitting

Cp,0s"  [Cp,0sV—H"]* [Cp,0s"'—Cp,0s'""]2* [Cp,0sV—0OH"]* Cp,0s'

toust PNAS, in press
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Osmocenium dimer

Metal-metal dimer Water sandwich Ring-Ring dimer
dimer

+0 O

[szOsm ~H,0 - 0s"Cp, TH’ BN [CPZOSW(OH)] + [CPZOSIV(H_)T_
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MoS2-catalysed Hydrogen Production
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arbon supported MoS; catalyst

must
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200 nm

(@) SEM image of MoS, on mesoporous carbon nanoparticles, magnification 28.6 k

(b) SEM image of MoS, on mesoporous carbon nanoparticles, magnification 101.5 k.

(c +d) TEM + EDX analysis images of MoS2 on mesoporous carbon showing uniform coating of Mo
and S on the carbon.

(e) High resolution TEM of MoS; on mesoporous carbon (arrows indicate the location of MoS»).



MoS2-catalysed Hydrogen Production
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Solar energy is also
a chemical challenge...




Mercl pour votre attention
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