

1888 EDS Weliner, September 15, 2015

Showstoppers & Bottlenecks to Terawatt Solar Photovoltaics

Meng Tao, Professor

Laboratory for Terawatt Photovoltaics Arizona State University

Phone: (480) 965-9845

Email: meng.tao@asu.edu

Outline

- Principle of solar cells
- Current & future global energy demands
 - Scales required for solar PV
- Requirements for a terawatt-capable PV technology
- Showstoppers & bottlenecks to terawatt PV
 - Availability of raw materials
 - Energy input for Si wafers & modules
 - Recycling of end-of-life PV modules
 - Terawatt-scale storage of solar electricity
 - Manufacturing and installation costs
- Suggested strategic R&D directions for PV

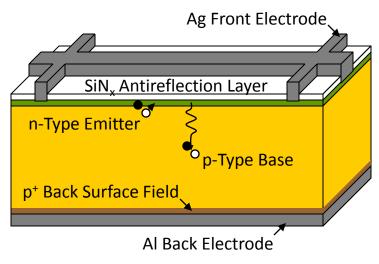
Acknowledgments

- This talk is based primarily on:
 - M. Tao, Terawatt Solar Photovoltaics: Roadblocks and Opportunities (Springer, 2014, ISBN 978-1-4471-5642-0)
 - C.S. Tao, J. Jiang, M. Tao, "Natural resource limitations to terawatt-scale photovoltaic solar cells," Solar Energy Materials and Solar Cells 95, 3176–80 (2011)

Background

- This analysis started with the establishment of the U.S. Photovoltaic Manufacturing Consortium (Albany, NY, 2011)
 - Led by SEMATECH & funded by U.S. Department of Energy & States of New York & Florida
 - A 5-year joint effort initiated by SEMATECH (D. Holladay) & myself (2006–2011)
 - Forced me to look into longer-term, bigger-picture, national
 & global issues for PV technologies
 - First presentations at Electrochemical Society fall meeting (Vienna, 2009) & U.S. PV Consortium Workshop (Washington DC, 2010)

Arizona Landscape

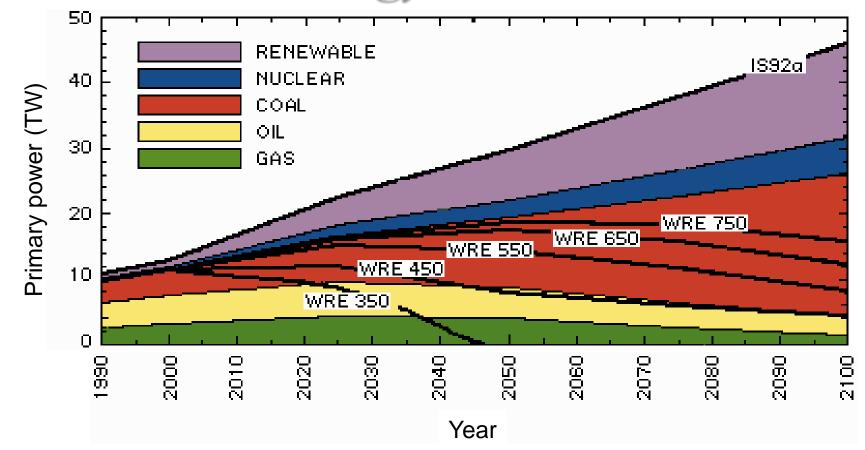


Sunrise over Four Peaks from my home

Principle of Solar Cells

Light-induced voltage

- Employed for solar-toelectric conversion
- Two key processes
 - Light absorption
 - Charge separation
- Two requirements
 - Light absorber: molecule or semiconductor
 - Potential difference: p-n, Schottky, or hetero



Si Solar Cell Operation

Si wafer: 200 μ m low 10¹⁶ B doping Emitter: 0.5 μ m 10¹⁹ P doping BSF: 10 μ m low 10¹⁹ Al doping SiN_x: 75 nm

How Much Energy Do We Need?

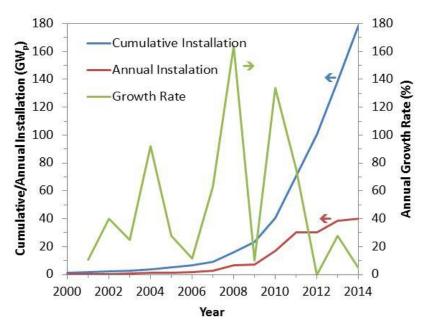
Current global consumption 18 TW (18×10¹² W) Projected demand in 2100 46 TW Hoffert et al,

Hoffert et al, Nature 395 (1998) 881

Conclusion #1

- Any solar PV technology has to be deployed at a TW scale, or it will make little impact on our energy mix
 - By 2100, global energy demand will be 46 TW
 - If 30% from PV, that is 13.8 TW from PV
 - Time-averaged output ~15% of peak output, so ~92 TW_p PV installation needed
 - If the average lifetime of PV modules is 25 years, the annual production needs to reach ~3.7 TW_p/yr

We need ~100 TW_p of solar PV installed & ~4 TW_p/yr annual production!

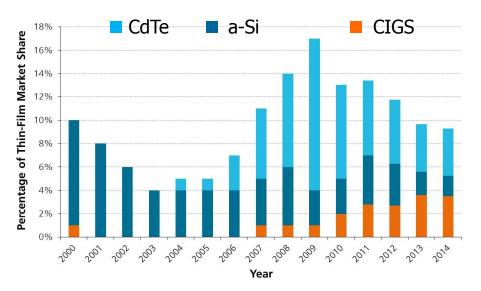

Implications of Terawatt PV

- Terawatt-scale deployment of any PV technology requires massive amounts of natural resources
 - Raw materials, chemicals, electricity, water, transportation...
 - Limited supplies of natural resources could prevent PV from reaching a terawatt scale
- There are huge amounts of wastes and end-of-life modules from any PV technology
 - Limited capabilities to handle/recycle them would prevent PV from reaching a terawatt scale

Status of PV Industry as 12/31/14

- ~180 GW_p global installed capacity
 - Annual revenues ~\$250B
 - $\sim ~50 \text{ GW}_{p}/\text{yr production}$
 - ~45% annual growth since 2005
 - ~0.5% global electricity capacity
- If 30% by 2100, the industry has to expand >500-fold in 85 years

The potential for PV is enormous!

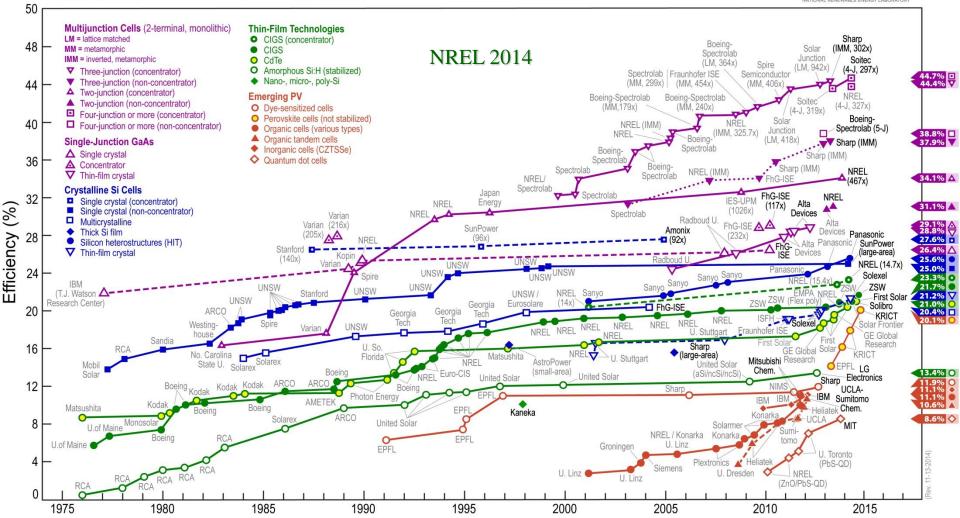

Growth of PV Industry

Huge ups & downs as an industry in its infancy

European Photovoltaic Industry Association 2015

PV Industry Breakdown 2014

- Four commercial technologies
 - Wafer-Si (~200 μm):
 ~91%
 - Multi-Si >55%
 - Mono-Si ~35%
 - Thin-film (<5 μm): ~9%</p>
 - CdTe: ~4%
 - Si (amorphous or microcrystalline): ~2%
 - CuIn_xGa_{1-x}Se₂ (CIGS, x~0.7): ~3%


CdTe Market Share

- CdTe peaked in 2009 (13%) & has been losing market share since
- CdTe will continue to lose, & wafer-Si will continue to gain, market share

Fraunhofer ISE 2015

Current PV Technologies Best Research-Cell Efficiencies

Cost: A Well-Known Bottleneck

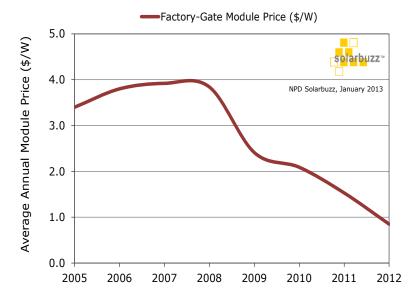
Technology	Cost (¢/kWh)
Wind	~7
PV	~13
CSP	~24
Geothermal	~5
Hydropower	~8
Natural Gas	7–11
Coal	9–12
Nuclear	~10

2020 Cost of Electricity*

- Solar electricity 3× more expensive than other forms of electricity today
- By 2020 it is likely <1.5× more expansive according to DOE

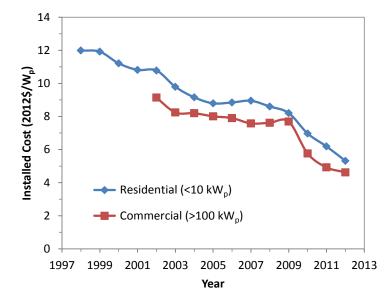
Cost is a major bottleneck: ~3× today

🔮 But


- But solar cost is coming down quickly
- Fossil fuel prices going up quickly
- Would the PV industry take off when fossil fuel prices exceed PV cost?

The answer is likely a NO!

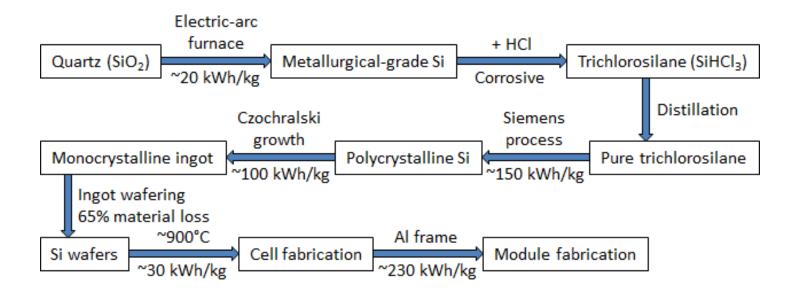
* DOE EIA, Annual Energy Outlook 2015


Cost Trend

Historical Module Price

Module price down 4-fold since 2005 System cost down 1.7-fold since 2005

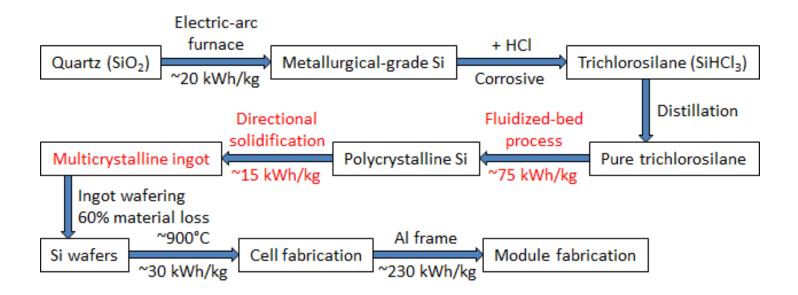
NPD Solarbuzz 2013


System Costs

Residential & commercial Utility-scale system $3.45/W_p$ in 2012

G. Barbose et al, Tracking the Sun VI (2013)

A Bottleneck for Wafer Silicon


- The process to make w-Si modules is costly, energy-intensive and polluting: ~4.2 kWh/Wp for monocrystalline Si modules
- Annual production of 3.7 TW_p of mono-Si modules would require ~79% of the 2012 global electricity consumption,* w/o considering transmission losses

C.S. Tao et al, SEMSC 95 (2011) 3176

* DOE EIA, International Energy Statistics 2014

An Alternative Process

- Directional solidification replaces Czochralski growth: 100 kWh/kg down to 15 kWh/kg & less material loss during wafering, but multi-Si ingot The industry trades performance for cost!
- Fluidized-bed process may replace Siemens process, but powder formation

Energy Payback Time

- 1 W_p PV produces ~1.35 kWh/yr in AZ
 - ~15% time-averaged output
- Energy payback time in Arizona
 - Location dependent
 - ~3 yrs for mono-Si
 - ~2 yrs for multi-Si cells
 - After that, installed PV produces net energy

Energy input for various scenarios*

	Siemens Process	Fluidized- Bed Process
Mono-Si Module	~4.2 kWh/W _p	~3.3 kWh/W _p
Multi-Si Module	\sim 3.4 kWh/W _p	\sim 2.5 kWh/W _p

 * M. Tao, Terawatt Solar Photovoltaics: Roadblocks and Opportunities (Springer, 2014)

Energy Means Cost

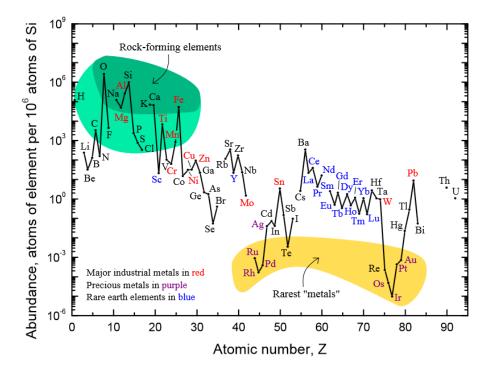
Electricity input for poly-Si is ~220 kWh/kg (Siemens)

- In U.S., industrial electricity ~7¢/kWh
- Electricity cost for poly-Si is ~\$15/kg: How can the industry profit when the poly-Si price drops below \$20/kg?
 - Use of cheap hydropower, but its capacity limited*
 - Self-generation ~5¢/kWh
 - Low energy input = low cost + short energy payback time
- Electricity consumption for mono-Si PV is ~4.2 kWh/Wp
 - **Electricity cost for 1** W_p is 29¢/ W_p
 - **DOE** target 50¢/W_p for modules: HOW?

Requirements for Terawatt PV

Material requirements

- Abundant material
- Low-cost material
- Energy-efficient synthesis
- Low-cost synthesis
- Low-carbon synthesis
- Minimum health & environmental impact
- Stability & reliability in air
 & under UV
- Recyclability of end-of-life modules


- Device requirements
 - High minority carrier lifetime
 - High absorption coefficient
 - Direct bandgap
 - Broad absorption spectrum
 - Suitable bandgap
 - ~1.4 eV
 - Both conduction types
 - Suitable resistivity

None of the current PV technologies meets all the requirements!

M. Tao, Interface 17(4) (2008) 30

CdTe

Abundance of Elements

USGS, Rare Earth Elements – Critical Resources for High Technology 2002

Phenomenal growth

- **B** First to reach \$1/W_p
- Grew 25-fold in 4 years
- But having been losing market share since

What will limit CdTe?

- Known reserve of Te 24,000 tons*
- Best scenario 492 GW_p
- ~0.16% of the 2100 energy demand

* USGS, Mineral Commodity Summary 2015

What Is Best Scenario?

Estimation based on material consumption in PV modules and material reserve

- If there is 10 g of material on the planet and the consumption is 1 g/W_p, only 10 W_p modules can be made
- The assumption is 100% material utilization
 - All the reserve can be extracted: Some may be too expensive to extract
 - All the reserve exclusively for PV: Other industries may compete for the material
 - No material loss during module fabrication
- The assumption also include indefinite module lifetime
 - Current modules are typically rated 25 years
- None of these assumptions can be true best scenarios

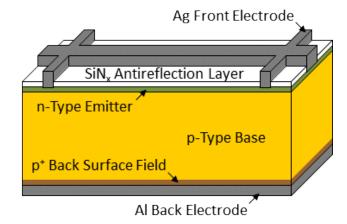
Other Scarce Materials: In

Multiple issues with CIGS

- Poor manufacturability: Poor uniformity of three cations
- Limited availability of In
- Estimation of maximum power from CIGS
 - Known reserve of In 11,000 tons*
 - Composition CuIn_{0.7}Ga_{0.3}Se₂
 - Best scenario 1.1 TW_p
 - ~0.36% of the 2100 energy demand
- Competitions for In
 - FPD, LED, lasers, power devices, etc.
 - Be Hard for the PV industry to compete

C.S. Tao et al, SEMSC 95 (2011) 3176

TCO 250 nm	CdS 70 nm
CIGS 1–2.5 μm	
Mo 0.5–1 μm	
Glass	


* USGS, Mineral Commodity Summary 2008

Other Scarce Materials: Ag

Silver used in wafer-Si cells as front electrode

- Known reserve 530,000 tons*
- Best scenario 10.1 TW_p
 - 12 μm Ag assumed
 - 7% surface coverage
- ~3.3% of the 2100 energy demand
 - Realistically maybe 2%
- Competitions for Ag
 - Solders, brazing alloys, batteries, catalyst, jewelry, silverware...

Conclusion #2

Without technical breakthroughs, current commercial PV technologies excluding thin-film Si would provide <4% of the 2100 energy demand under best scenarios

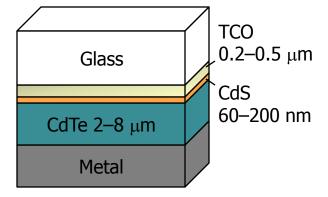
Cell Technology	Efficiency Used	Limiting Material	Reserve Base (ton)	Maximum Wattage	Averaged Output (TW)	% of 2100 Energy Demand
Wafer-Si	16.8%	Silver	530,000	10.1 TW _p	1.52	3.3%
CdTe	12.8%	Tellurium	24,000	492 GW _p	0.074	0.16%
CIGS	14.3%	Indium	11,000	1.1 TW _p	0.165	0.36%
Thin-film Si*	9.8%	TW capable	-	_	-	_

* Thin-film Si is the only technology capable of terawatt-scale deployment today, but it has lower efficiency and higher cost and is losing market share

C.S. Tao et al, SEMSC 95 (2011) 3176

Annual Production of Materials

- Material production rate limits deployment rate of PV
- Required annual production ~3 TW_p/yr
 - With 92 TW_p total installation & 25-year module lifetime, \sim 3.7 TW_p modules will die each year
 - Annual production of 3.7 TW_p will maintain a steady-state 92 TW_p total installation



Annual Production of CdTe

Annual production of Te ~550 tons*

- Te to be depleted in 44 yrs
 - Reserve 24,000 tons
- Best scenario 11 GW_p/yr
 - Realistically maybe 6 GW_p/yr
- Current production ~2 GW_p/yr by First
 Solar
 - If First Solar has access to half of the Te produced, i.e. \sim 3 GW_p/yr
 - Room for growth limited for First Solar: It has to lose market share
 - First Solar has a good business model

But our energy/environmental crisis will not be solved by CdTe

* USGS, Minerals Yearbook 2012

** E. Fortunato et al, MRS-B 32 (2007) 242

Annual Production of Ag & In

Wafer-Si employs Ag front electrode

- Production of Ag 26,100 tons/yr*
 - Ag to be depleted in 20 yrs
- Best scenario 498 GW_p/yr
 - Realistically maybe 300 GW_p/yr , currently ~50 GW_p/yr
- CIGS (CuIn_{0.7}Ga_{0.3}Se₂)
 - Production of In 820 tons/yr & that of Ga 440 tons/yr*
 - In to be depleted in 14 yrs
 - Best scenario 83 GW_p/yr
 - Limited by In

Conclusion #3

Without technical breakthroughs, current commercial PV technologies excluding thin-film Si would plateau at $<600 \text{ GW}_{p}/\text{yr}$ under best scenarios

Cell Technology	Efficiency Used	Limiting Material	Annual Production (ton)	Annual Production (GW _p /yr)	Years to Depletion
Wafer-Si	16.8%	Silver	26,100	498	20
CdTe	12.8%	Tellurium	550	11	44
CIGS	14.3%	Indium	820	83	14
Thin-film Si*	9.8%	TW capable	-	_	_

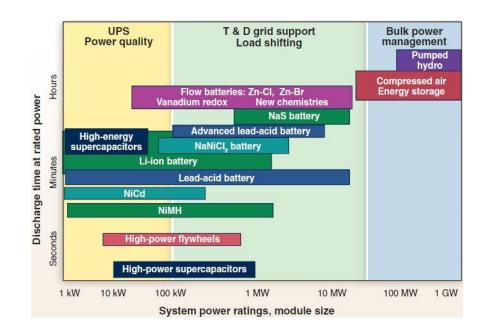
* Thin-film Si PV is the only technology capable of terawatt-scale deployment today, but it has lower efficiency and higher cost and is losing market share

C.S. Tao et al, SEMSC 95 (2011) 3176

Storage of Solar Electricity

First showstopper: ~3.7 TW_p PV w/o storage

- The grid can serve as a buffer, to some extent, w/o storage
 - But unlikely to take >10% from PV w/o storage
- Current global electricity capacity 5.5 TW*
 - Limits PV capacity to ~550 GW or ~3.7 TW_{p}
- Second showstopper: ~30 TW_p PV w/o conversion
 - In US, 32% of energy we use is non-renewable electricity**
 - Another 5% of energy is electricity from hydropower
 - Current global energy consumption ~18 TW
 - If 25% of energy is non-renewable electricity, i.e. 4.5 TW
 - Limits PV to \sim 30 TW_p unless solar electricity is converted to a fuel


* DOE EIA, International Energy Statistics 2014

** DOE EIA, Annual Energy Review 2011

Storage Options

- GW capable
 - Limited by geology
 - Pumped hydropower
 - Compressed air
- 🔮 kW to MW
 - Various batteries
 - Flywheel
 - Supercapacitor
 - Hear storage
 - Superconducting magnet

Storage Performance

TW scale storage requires GW scale capacity for hours or even days

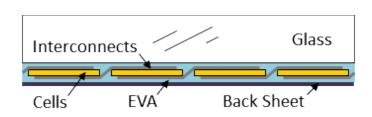
* IRENA, Electricity Storage 2012

B. Dunn et al, Science 334 (2011) 928

Case Study for Batteries

If 30% from PV by 2100, i.e. 13.8 TW

- If 50% of solar electricity requires storage, i.e. a minimum of $\sim 1.7 \times 10^{11}$ kWh to be stored on a daily basis
 - Actually more than 50% due to weather
- Typical laptop batteries are 50 Wh each
 - At least 473 laptop batteries/person for the 7 billion people on Earth
 - Amounts of natural resources needed to make these batteries?
 - Amounts of wastes and dead batteries to handle?

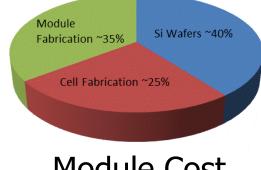

Recycling of PV Modules

- Stead-state 92 TW_p total installation & 25-year module lifetime
 - **3.7** TW_p/yr modules through their lifetime
 - If these are wafer-Si modules with 16.8% efficiency, there are 2.2x10⁴ km²/yr dead modules
 - The size of New Jersey has to be recycled each year
- CdTe is recycled by First Solar
 - Cd is toxic & Te is rare
 - But many companies are overlooking recycling

Conergy Policy

Recycling of Si Modules

- With >90% of the market, Si modules are not routinely recycled & technology not ready yet
 - Ag would be depleted in 20 years
 - Pb is toxic
- There are financial incentives to recycle Si modules
 - ~20 g/module of Ag worth \$10-30/module
 - 95% recovery and \$15–45/oz of Ag
 - ~650 g/module of solar-grade Si worth ~\$10/module
 - 90% recovery and \$18/kg of poly-Si
 - Savings in energy to purify Si


Cost Contributors

Installation

- >3/4 of the system cost, especially soft costs
 - Design, permitting, financing, labor, hardware...
- Energy
 - Poly-Si and Al frame
- Raw materials
 - Ag, Si, glass, Al frame, EVA, backsheet...

Processing

- B Wafering, diffusion, AR coating, metallization, interconnect...
- Non-vacuum continuous processing

Module Cost Breakdown*

Lower Cost by Standardization

One factor: Each PV system is individually designed

- Modules have different power & efficiency
 - Have to accommodate different modules w/ minimum mismatch
 - Require customized hardware
 - Replacing a bad module in a system is a headache
- The reason: Cell efficiency dispersion
 - Efficiency ranges 12–18% from "same" process, same ingot
 - Every cell/module has to be tested and sorted (binned)
 - Only cells with similar efficiencies are packaged into a module
 - Only modules with similar efficiencies are connected in an array
 - Commercial modules have 2% efficiency dispersion
 - Disqualified cells lead to a higher cost

How to narrow the efficiency spread down to, say, $\pm 0.5\%$?

- Most PV technologies incapable of making an impact
- Strategic R&D directions for a sustainable PV industry
 - Wafer-Si based
 - Energy-efficient purification for solar-grade Si
 - Substitution of Ag with an Earth-abundant metal (Cu & Al)
 - Module standardization by cell efficiency uniformization
 - Non-vacuum continuous processing
 - Low-kerf wafering of ingot
 - Recycling of end-of-life cells/modules
 - Thin-film Si: lower cost & higher efficiency
 - Next-generation PV: Earth-abundant materials
 - Terawatt-scale storage of solar electricity Innovation! Innovation!! Innovation!!!